ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Magnetic and thermal hysteresis in the O(N)-symmetric ( Phi 2)3 model

Rao, Madan and Pandit, Rahul (1991) Magnetic and thermal hysteresis in the O(N)-symmetric ( Phi 2)3 model. In: Physical Review B, 43 (4). 3373 -3386.

[img]
Preview
PDF
26.pdf

Download (2251Kb)

Abstract

We extend our study of hysteresis to the O(N) symmetric ( Phi 2)3 model in three dimensions with the dynamics of the nonconserved order parameter given by a Langevin equation. We analyze both thermal and magnetic hysteresis within this model. We study the systematics of the shapes and areas of hysteresis loops as functions of the amplitude and frequency of the applied field and other parameters in the theory. In the case of magnetic hysteresis we obtain pinched loops for a range of values in parameter space and demonstrate a scaling behavior of the area of the hysteresis loop with the amplitude H0 of the magnetic field for low amplitudes: A [approx equals] H alpha 0, where the exponent alpha =2/3. This puts the magnetic hysteresis behavior of the ( Phi 2)3 model in the same universality class as that of the ( Phi 2)2 model. Thermal hysteresis, obtained by cycling the temperature in the presence of a small magnetic field, is characterized by asymmetric loops. We find that the area of the thermal hysteresis loops scales as a function of the amplitude of the periodic temperature (for low amplitudes): A [approx equals] r alpha 0, where alpha =1. we show that our study is relevant to the physics of ferroelectric materials and charge-density-wave systems. Our observations are consistent with existing experimental data on ferroelectrics and charge-density waves.

Item Type: Journal Article
Additional Information: Copyright for this article belongs to American Physical Society
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 26 Jul 2004
Last Modified: 19 Sep 2010 04:14
URI: http://eprints.iisc.ernet.in/id/eprint/1163

Actions (login required)

View Item View Item