ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

A primal-dual algorithm for computing Fisher equilibrium in the absence of gross substitutability property.

Garg, Dinesh and Jain, Kamal and Talwar, Kunal and Vazirani, Vijay V (2007) A primal-dual algorithm for computing Fisher equilibrium in the absence of gross substitutability property. In: Theoretical Computer Science, 378 (2). pp. 143-152.

[img] PDF
A_primal-dual_algorithm_for_computing.pdf
Restricted to Registered users only

Download (264Kb) | Request a copy

Abstract

We provide the first strongly polynomial time exact combinatorial algorithm to compute Fisher equilibrium for the case when utility functions do not satisfy the Gross substitutability property. The motivation for this comes from the work of Kelly, Maulloo, and Tan [F.P. Kelly, A.K. Maulloo, D.K.H. Tan, Rate control for communication networks: Shadow prices, proportional fairness and stability, Journal of Operational Research (1998)] and Kelly and Vazirani [F.P. Kelly, Vijay V. Vazirani, Rate control as a market equilibrium (2003) (in preparation)] on rate control in communication networks. We consider a tree like network in which root is the source and all the leaf nodes are the sinks. Each sink has got a fixed amount of money which it can use to buy the capacities of the edges in the network. The edges of the network sell their capacities at certain prices. The objective of each edge is to fix a price that can fetch the maximum money for it, and the objective of each sink is to buy capacities on edges in such a way that it can facilitate the sink to pull maximum flow from the source. In this problem, the edges and the sinks play precisely the role of sellers and buyers, respectively, in Fisher’s market model. The utility of a buyer (or sink) takes the form of a Leontief function which is known for not satisfying Gross substitutability property. We develop an $O(m^3)$ exact combinatorial algorithm for computing equilibrium prices of the edges. The time taken by our algorithm is independent of the values of sink money and edge capacities. A corollary of our algorithm is that equilibrium prices and flows are rational numbers. Although there are algorithms to solve this problem they are all based on convex programming techniques. To the best of our knowledge, ours is the first strongly polynomial time exact combinatorial algorithm for computing equilibrium prices of Fisher’s model under the case when buyers’ utility functions do not satisfy gross substitutability property.

Item Type: Journal Article
Additional Information: Copyright of this article belongs to Elsevier.
Keywords: Computing market equilibria;Fisher equilibrium;Gross substitutability property;Strongly polynomial time exact algorithm;Combinatorial algorithm;Primal-dual algorithm
Department/Centre: Division of Electrical Sciences > Computer Science & Automation (Formerly, School of Automation)
Date Deposited: 20 Sep 2007
Last Modified: 19 Sep 2010 04:39
URI: http://eprints.iisc.ernet.in/id/eprint/11849

Actions (login required)

View Item View Item