ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

A Note on the Diagonalizability and the Jordan Form of the 4×4 Homogeneous Transformation Matrix

Sangamesh, Deepak R and Ghosal, Ashitava (2006) A Note on the Diagonalizability and the Jordan Form of the 4×4 Homogeneous Transformation Matrix. In: Journal of Mechanical Design, 128 (6). pp. 1343-1348.

[img] PDF
A_note_on_the_diagonalizability_and_the_Jordan_form_of_the_4_x_4_homogeneous_transformation.pdf
Restricted to Registered users only

Download (219Kb) | Request a copy

Abstract

The 4x4 homogeneous transformation matrix is extensively used for representing rigid body displacement in 3D space and has been extensively used in the analysis of mechanisms, serial and parallel manipulators, and in the field of geometric modeling and computed aided design. The properties of the transformation matrix are very well known. One of the well known properties is that a general 4x4 homogeneous transformation matrix cannot be diagonalized, and at best can be reduced to a Jordan form. In this paper, we show that the 44 homogeneous transformation matrix can be diagonalized if and only if displacement along the screw axis is zero. For the general transformation with nonzero displacement along the axis, we present an explicit expression for the fourth basis vector of the Jordan basis. We also present a variant of the Jordan form which contains the motion variables along and about the screw axis and the corresponding basis vectors which contains the information only about the screw axis and its location. We present a novel expression for a point on the screw axis closest to the origin, which is then used to form a simple choice of basis for different forms. Finally, the theoretical results are illustrated with a numerical example.

Item Type: Journal Article
Additional Information: Copyright of this article belongs to American Society for Mechanical Engineers.
Department/Centre: Division of Mechanical Sciences > Mechanical Engineering
Date Deposited: 22 May 2008
Last Modified: 19 Sep 2010 04:45
URI: http://eprints.iisc.ernet.in/id/eprint/14023

Actions (login required)

View Item View Item