ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

On the Molecular Mechanism of Drug Intercalation into DNA: A Simulation Study of the Intercalation Pathway, Free Energy, and DNA Structural Changes

Mukherjee, Arnab and Lavery, Richard and Bagchi, Biman and Hynes, James T (2008) On the Molecular Mechanism of Drug Intercalation into DNA: A Simulation Study of the Intercalation Pathway, Free Energy, and DNA Structural Changes. In: journal of American Chemical Society, 130 (30). pp. 9747-9755.

[img] PDF
molecule.pdf - Published Version
Restricted to Registered users only

Download (728Kb) | Request a copy
Official URL: http://pubs.acs.org/cgi-bin/article.cgi/jacsat/200...

Abstract

Intercalation into DNA (insertion between a pair of base pairs) is a critical step in the function of many anticancer drugs. Despite its importance, a detailed mechanistic understanding of this process at the molecular level is lacking. We have constructed, using extensive atomistic computer simulations and umbrella sampling techniques, a free energy landscape for the intercalation of the anticancer drug daunomycin into a twelve base pair B-DNA. A similar free energy landscape has been constructed for a probable intermediate DNA minor groove-bound state. These allow a molecular level understanding of aspects of the thermodynamics, DNA structural changes, and kinetic pathways of the intercalation process. Key DNA structural changes involve opening the future intercalation site base pairs toward the minor groove (positive roll), followed by an increase in the rise, accompanied by hydrogen bonding changes of the minor groove waters. The calculated intercalation free energy change is -12.3 kcal/mol, in reasonable agreement with the experimental estimate -9.4 kcal/mol. The results point to a mechanism in which the drug first binds to the minor groove and then intercalates into the DNA in an activated process, which is found to be in general agreement with experimental kinetic results.

Item Type: Journal Article
Additional Information: Copyright of this article belongs to American Chemical Society.
Department/Centre: Division of Chemical Sciences > Solid State & Structural Chemistry Unit
Date Deposited: 19 Oct 2008 15:16
Last Modified: 19 Sep 2010 04:51
URI: http://eprints.iisc.ernet.in/id/eprint/16148

Actions (login required)

View Item View Item