ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers

Wohlgenannt, M and Tandon, Kunj and Mazumdar, S and Ramasesha, S and Vardeny, ZV (2001) Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers. In: Nature, 409 (6819). pp. 494-497.

[img] PDF
Formation_cross.pdf - Published Version
Restricted to Registered users only

Download (171Kb) | Request a copy
Official URL: http://www.nature.com/nature/journal/v409/n6819/fu...

Abstract

Electroluminescence in organic light-emitting diodes arises from a charge-transfer reaction between the injected positive and negative charges by which they combine to form singlet excitons that subsequently decay radiatively. The quantum yield of this process (the number of photons generated per electron or hole injected) is often thought(1) to have a statistical upper limit of 25 per cent. This is based on the assumption that the formation cross-section of singlet excitons, sigma (s), is approximately the same as that of any one of the three equivalent non-radiative triplet exciton states, sigma (T); that is, sigma (S)/sigma (T) approximate to 1. However, recent experimental(2) and theoretical(3) work suggests that sigma (S)/sigma (T) may be greater than 1. Here we report direct measurements of sigma (S)/sigma (T) for a large number of pi -conjugated polymers and oligomers. We have found that there exists a strong systematic, but not monotonic, dependence of sigma (S)/sigma (T) on the optical gap of the organic materials. We present a detailed physical picture of the charge-transfer reaction for correlated pi -electrons, and quantify this process using exact valence bond calculations. The calculated sigma (S)/sigma (T) reproduces the experimentally observed trend. The calculations also show that the strong dependence of sigma (S)/sigma (T) on the optical gap is a signature of the discrete excitonic energy spectrum, in which higher energy excitonic levels participate in the charge recombination process.

Item Type: Journal Article
Additional Information: Copyright of this article belongs to Macmillan Publishers.
Keywords: Ladder-Type Poly(Para-Phenylene);Hubbard Models;Electroluminescence;Excitations.
Department/Centre: Division of Chemical Sciences > Solid State & Structural Chemistry Unit
Date Deposited: 22 Jul 2009 08:02
Last Modified: 19 Sep 2010 04:54
URI: http://eprints.iisc.ernet.in/id/eprint/16984

Actions (login required)

View Item View Item