ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Free energy landscape of a dense hard-sphere system

Dasgupta, Chandan and Valls, Oriol T (1999) Free energy landscape of a dense hard-sphere system. In: Physical Review E, 59 (3). pp. 3123-3134.

[img] PDF
p3123_1.pdf - Published Version
Restricted to Registered users only

Download (180Kb) | Request a copy
Official URL: http://prola.aps.org/abstract/PRE/v59/i3/p3123_1

Abstract

The topography of the free energy landscape in phase space of a dense hard-sphere system characterized by a discretized free energy functional of the Ramakishnan-Yussouff form is investigated numerically using a specially devised Monte Carlo procedure. We locate a considerable number of glassy local minima of the free energy and analyze the distributions of the free energy at a minimum and an appropriately defined phase-space "distance" between different minima. We find evidence for the existence of pairs of closely related glassy minima("two-level systems"). We also investigate the way the system makes transitions as it moves from the basin of attraction of a minimum to that of another one after a start under nonequilibrium conditions. This allows us to determine the effective height of free energy barriers that separate a glassy minimum from the others. The dependence of the height of free energy barriers on the density is investigated in detail. The general appearance of the free energy landscape resembles that of a putting green: relatively deep minima separated by a fairly flat structure. We discuss the connection of our results with the Vogel-Fulcher law and relate our observations to other work on the glass transition.

Item Type: Journal Article
Additional Information: Copyright of this article belongs to The American Physical Society.
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 22 Jul 2009 09:38
Last Modified: 19 Sep 2010 05:28
URI: http://eprints.iisc.ernet.in/id/eprint/19526

Actions (login required)

View Item View Item