ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

X-ray studies on crystalline complexes involving amino acids and peptides. XL. Conformational variability, recurring and new features of aggregation, and effect of chirality in the malonic acid complexes of DL- and L-arginine

Saraswathi, NT and Vijayan, M (2002) X-ray studies on crystalline complexes involving amino acids and peptides. XL. Conformational variability, recurring and new features of aggregation, and effect of chirality in the malonic acid complexes of DL- and L-arginine. In: Acta Crystallographica Section B, 58 . pp. 1051-1056.

[img] PDF
207.pdf
Restricted to Registered users only

Download (202Kb) | Request a copy

Abstract

The crystal structures of the complexes of malonic acid with DL- and L-arginine, which contain positively charged argininium ions and negatively charged semimalonate ions, further demonstrate the conformational flexibility of amino acids. A larger proportion of folded conformations than would be expected on the basis of steric consideration appears to occur in arginine, presumably because of the requirements of hydrogen bonding. The aggregation pattern in the DL-arginine complex bears varying degrees of resemblance to patterns observed in other similar structures. An antiparallel hydrogenbonded dimeric arrangement of arginine, and to a lesser extent lysine, is a recurring motif. Similarities also exist among the structures in the interactions with this motif and its assembly into larger features of aggregation. However, the aggregation pattern observed in the L-arginine complex differs from any observed so far, which demonstrates that all the general patterns of amino-acid aggregation have not yet been elucidated. The two complexes represent cases where the reversal of the chirality of half the amino-acid molecules leads to a fundamentally different aggregation pattern.

Item Type: Journal Article
Additional Information: The copyright belongs to International Union of Crystallography.
Department/Centre: Division of Biological Sciences > Molecular Biophysics Unit
Date Deposited: 25 Oct 2004
Last Modified: 19 Sep 2010 04:16
URI: http://eprints.iisc.ernet.in/id/eprint/2104

Actions (login required)

View Item View Item