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Abstract

We review the past decade’s theoretical and experimental studies of flocking: the collective,
coherent motion of large numbers of self-propelled “particles” (usually, but not always, living
organisms). Like equilibrium condensed matter systems, flocks exhibit distinct “phases” which
can be classified by their symmetries. Indeed, the phases that have been theoretically studied to
date each have exactly the same symmetry as some equilibrium phase (e.g., ferromagnets, li-
quid crystals). This analogy with equilibrium phases of matter continues in that all flocks in
the same phase, regardless of their constituents, have the same ‘“hydrodynamic”—that is,
long-length scale and long-time behavior, just as, e.g., all equilibrium fluids are described
by the Navier-Stokes equations. Flocks are nonetheless very different from equilibrium sys-
tems, due to the intrinsically nonequilibrium self-propulsion of the constituent “organisms.”
This difference between flocks and equilibrium systems is most dramatically manifested in
the ability of the simplest phase of a flock, in which all the organisms are, on average moving
in the same direction (we call this a “ferromagnetic’” flock; we also use the terms ‘““vector-or-
dered” and “polar-ordered” for this situation) to exist even in two dimensions (i.e., creatures
moving on a plane), in defiance of the well-known Mermin—-Wagner theorem of equilibrium
statistical mechanics, which states that a continuous symmetry (in this case, rotation invari-
ance, or the ability of the flock to fly in any direction) can not be spontaneously broken in
a two-dimensional system with only short-ranged interactions. The “nematic” phase of flocks,
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in which all the creatures move preferentially, or are simply oriented preferentially, along the
same axis, but with equal probability of moving in either direction, also differs dramatically
from its equilibrium counterpart (in this case, nematic liquid crystals). Specifically, it shows
enormous number fluctuations, which actually grow with the number of organisms faster than
the /N “law of large numbers” obeyed by virtually all other known systems. As for equilib-
rium systems, the hydrodynamic behavior of any phase of flocks is radically modified by addi-
tional conservation laws. One such law is conservation of momentum of the background fluid
through which many flocks move, which gives rise to the “hydrodynamic backflow” induced
by the motion of a large flock through a fluid. We review the theoretical work on the effect of
such background hydrodynamics on three phases of flocks—the ferromagnetic and nematic
phases described above, and the disordered phase in which there is no order in the motion
of the organisms. The most surprising prediction in this case is that “ferromagnetic”” motion
is always unstable for low Reynolds-number suspensions. Experiments appear to have seen
this instability, but a quantitative comparison is awaited. We conclude by suggesting further
theoretical and experimental work to be done.

1. Introduction

Flocking [1}—the collective, coherent motion of large numbers of organisms—is
one of the most familiar and ubiquitous biological phenomena. We have all seen
flocks of birds, schools of fish, herd of wildebeest, etc. (at least on film). We will here-
after refer to all such collective motions—flocks, swarms, herds, etc.—as “flocking.”
This phenomenon also spans an enormous range of length scales: from kilometers
(herds of wildebeest) to micrometers (e.g., the micro-organism Dictyostelium discoid-
eum) [2-4]. Remarkably, despite the familiarity and widespread nature of the phe-
nomenon, it is only in the last 10 years or so that many of the universal features
of flocks have been identified and understood. It is our goal in this paper to review
these recent developments, and to suggest some of the directions future research on
this subject could take.

This “modern era” in the understanding of flocks began with the work of Vicsek
et al. [5], who was, to our knowledge, the first to recognize that flocks fall into the
broad category of nonequilibrium dynamical systems with many degrees of freedom
that has, over the past few decades, been studied using powerful techniques origi-
nally developed for equilibrium condensed matter and statistical physics (e.g., scal-
ing, the renormalization group, etc.). In particular, Vicsek noted an analogy
between flocking and ferromagnetism: the velocity vector of the individual birds is
like the magnetic spin on an iron atom in a ferromagnet. The usual “moving phase”
of a flock, in which all the birds, on average, are moving in the same direction, is then
the analog of the “ferromagnetic” phase of iron, in which all the spins, an average,
point in the same direction. Another way to say this is that the development of a
nonzero mean center of mass velocity (v) for the flock as a whole therefore requires
spontaneous breaking of a continuous symmetry (namely, rotational), precisely as
the development of a nonzero magnetization M = <§> of the spins in a ferromagnet
breaks the continuous [6] spin rotational symmetry of the Heisenberg magnet [7].



Of course, many flocking organisms do not move in a rotation-invariant environ-
ment. Indeed, the most familiar examples of flocking—namely, the seasonal migra-
tions of birds and mammals—clearly do not: creatures move preferentially south (in
the Northern hemisphere) as winter approaches, and north, as summer does. Pre-
sumably, the individual organisms get their directional cues from their environ-
ment—the sun, wind, ocean and air currents, temperature gradients, the earth’s
magnetic field, and so on—by a variety of means which we will term “compasses”
[8]. Collective effects of the type we will focus most of our attention on in this paper
are in principle less important in such “directed flocks.” However, collective aligning
tendencies greatly enhance the ability of the flock to orient in the presence of a small
external guiding field. Once aligned, like a permanent magnet made of soft iron, a
flock below its ordering “temperature’” will stay aligned even without the guiding
field. Moreover, even if there are external aligning fields, it is highly likely that crea-
tures in the interior of a flock decide their alignment primarily by looking at their
immediate neighbors, rather than the external field. Gruler et al. [9] has remarked
on the possible physiological advantage of the spontaneous aligning tendency. We
will have little more to say about this here (but see the discussion in Section 8).

All in all, it seems likely that there are many examples of flocking in nature where
collective behavior and interparticle interaction dominate over externally imposed
aligning fields, and experimental situations can certainly be devised where the gradi-
ents of nutrient, temperature or gravitational potential that produce such nonspon-
taneous alignment are eliminated, enabling a study of the phenomenon of
spontaneous order in flocks of micro-organisms such as D. discoidae [2] and melano-
cytes [9], the critters that carry human skin pigment. It is precisely here, as Vicsek
noted, that the ferromagnetic analogy just described immediately becomes useful,
suggesting that compasses are not necessary to achieve a coherently moving “ferro-
magnetic” flock, just as no external magnetic field picking out a special direction for
the spins is necessary to produce spontaneous magnetization in ferromagnets. It now
becomes an interesting question whether or not such spontaneous long-ranged or-
der—by which we mean order (in this case, collective motion of a// of the birds in
the same direction) that arises not by being imposed by an external field detected
by an internal compass, but rather arises just from the interaction of the birds with
each other—can, in fact, occur in flocks as it does in ferromagnets [10]. Is the anal-
ogy to ferromagnets truly a good one?

Vicsek pushed this analogy much further. Just as the spins in ferromagnets only
have short-ranged interactions (often modeled as strictly nearest-neighbor) so birds
in a flock may only interact with a few nearest neighbors. Of course, one again
might dispute this idea: perhaps birds can see the flock as a whole, and respond
to its movements. While this is undoubtedly true of some organisms (e.g., many
types of birds), it again seems unlikely that all flocking organisms (particularly
microscopic ones) have such long-ranged interactions. And likewise it is again an
interesting question whether such interactions are necessary to achieve a ferromag-
netic flocking state.

There remains one further analogy between moving flocks and ferromagnets: tem-
perature. The most striking thing about long-ranged ferromagnetic order in systems



with only short-ranged interactions is that it is robust at finite temperature, a fact so
un-obvious that it was not firmly established until Onsager’s solution of the 2D Ising
model. Is there an analogy of temperature in flocks? Vicsek realized that there was:
errors made by the birds as they tried to follow their neighbors. The randomness of
these errors introduces a stochastic element to the flocking problem in much the
same way that thermal fluctuations do at nonzero temperature in an equilibrium fer-
romagnet. Does the ordered, coherently moving “ferromagnetic’ state of a flock sur-
vive such randomness, making a uniformly moving, arbitrarily large flock possible,
just as an arbitrarily large chunk of iron can become uniformly magnetized, even at
finite temperature (and, indeed, is in its ordered, ferromagnetic phase at room tem-
perature)?

To answer this, and the questions raised earlier, about the nature of, and require-
ments for, flocking, Vicsek devised a “minimal” numerical simulation model for
flocking. The model incorporates the following general features:

1. A large number (a “flock”) of point particles (“boids™ [11]) each move over time
through a space of dimension d (=2, 3, ...), attempting at all times to “follow”
(i.e., move in the same direction as) its neighbors.

2. The interactions are purely short-ranged: each “boid” only responds to its neigh-
bors, defined as those “boids” within some fixed, finite distance R,, which is
assumed to be independent of L, the linear size of the “flock.”

3. The “following” is not perfect: the “boids” make errors at all times, which are
modeled as a stochastic noise. This noise is assumed to have only short-ranged
spatio-temporal correlations.

4. The underlying model has complete rotational symmetry: the flock is equally
likely, a priori, to move in any direction.

Any model that incorporates these general features should belong to the same
“universality class,” in the sense that term is used in critical phenomena and con-
densed matter physics. The specific discrete-time model proposed and simulated
numerically by Vicsek is the following:

The ith bird is situated at position {7 ()} in a two-dimensional plane, at integer
time 7. Each chooses the direction it will move on the next time step (taken to be
of duration Az = 1) by averaging the directions of motion of all of those birds within
a circle of radius Ry (in the most convenient units of length Ry = 1) on the previous
time step (i.e., updating is simultaneous). The distance R, is assumed to be <L, the
size of the flock. The direction the bird actually moves on the next time step differs
from the above described direction by a random angle #;(¢), with zero mean and
standard deviation 4. The distribution of #;(¢) is identical for all birds, time indepen-
dent, and uncorrelated between different birds and different time steps. Each bird
then, on the next time step, moves in the direction so chosen a distance vyAz, where
the speed vy is the same for all birds.

To summarize, the rule for bird motion is:

0:(t+ 1) = (0,(0)), + n,(0), o)



Fi(t+ 1) =Fi(t) + vo(cos 0(¢ + 1),sin 0(¢ + 1)), (2)

<'7i(t)’7j(t/)> = Ad;j0u, (4)

where the symbol (), denotes an average over “neighbors,” which are defined as the
set of birds j satisfying

[7;(2) = 7i(2)] < Ro, (5)

()without the subscript n denote averages over the random distribution of the noises
n;(t), and 0,(z) is the angle of the direction of motion of the ith bird (relative to some
fixed reference axis) on the time step that ends at .

The flock evolves through the iteration of this rule. Note that the “neighbors’ of a
given bird may change on each time step, since birds do not, in general, move in ex-
actly the same direction as their neighbors.

As first noted by Vicsek himself, this model is exactly a simple, relaxational
dynamical model for an equilibrium ferromagnet, except for the motion. That is,
if we interpret the #;’s as “spins’ carried by each bird, and update them according
to the above rule, but do not actually move the birds (i.e., just treat the 3;’s as ““point-
ers” carried by each bird), then the model is easily shown to be an equilibrium fer-
romagnet, which will relax to the Boltzmann distribution for an equilibrium
Heisenberg model (albeit with the “spins’ living not on a periodic lattice, as they
usually do in most models and in real ferromagnets, but, rather, on a random set
of points).

What Vicsek found in simulating this model largely supports the ferromagnetic
analogy, with one important exception. Specifically, Vicsek found that a coherently
moving, ferromagnetic flock was, indeed, possible in a system with full rotation
invariance, short-ranged interaction, and “nonzero temperature” (i.e., randomness,
characterized by 4 # 0). This was demonstrated by the existence of a nonzero aver-
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age velocity (V) = <~ for the entire flock for a range of values of 4 < 4., where the
critical 4, above which this order disappears is >0. A schematic plot of the behavior
of the average velocity |(V)| as a function of the 4 is shown in Fig. 1.

As noted by Vicsek, this looks very much like a plot of magnetization versus tem-
perature in a ferromagnet, with (8) playing the role of the magnetization M = <§>,
and 4 playing the role of temperature, exactly as the flock-ferromagnet analogy de-
scribed earlier would predict.

There is only one problem: for a two-dimensional ferromagnet, a plot like Fig. 1
would never happen. The reason for this is the well-known “Mermin-Wagner—
Hohenberg Theorem™ [12] of equilibrium statistical mechanics. This theorem states
that in a thermal equilibrium model at nonzero temperature with short-ranged inter-
actions, it is impossible to spontaneously break a continuous symmetry. This implies
in particular that the equilibrium or “pointer” version of Vicsek’s algorithm de-
scribed above, in which the birds carry a vector ; whose direction is updated accord-
ing to Vicsek’s algorithm, but in which the birds do not actually move, can never
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Fig. 1. The magnitude of the average velocity |(7)| versus the noise strength A. The existence of the two
phases, the moving (ordered) phase with |(#)| > 0 and the nonmoving (disordered) phase with |(¥)| =0,
are evident from the figure.

develop a true long-range ordered state in which all the #;’s point, on average, in the

same direction (more precisely, in which (¥) = % # 0), since such a state breaks a
continuous symmetry, namely rotation invariance.

Yet the moving flock evidently has no difficulty in doing so; as Vicsek’s simulation
shows, even two-dimensional flocks with rotationally invariant dynamics, short-ran-
ged interactions, and noise—i.e., seemingly all of the ingredients of the Mermin—
Wagner theorem—do move with a nonzero macroscopic velocity, which requires
() # 6, which, in turn, breaks rotation invariance, in seeming violation of the the-
orem.

How can this be? Is the Mermin—Wagner theorem wrong? Are birds smarter than
nerds?

The answer to the last two questions is, of course, no. The reason is that one of the
essential premises of the Mermin—Wagner theorem does not apply to flocks: they are
not systems in thermal equilibrium. The nonequilibrium aspect arises from the mo-
tion of the birds.

Clearly, it must: as described above, the motion is the only difference between Vic-
sek’s algorithm and a (slightly unconventional) equilibrium spin system. But how
does motion get around the Mermin—-Wagner theorem? And, more generally, how
best to understand the large-scale, long-time dynamics of a very large, moving flock?

The answer to this second question can be found in the field of hydrodynamics.

Hydrodynamics is a well-understood subject. This understanding does not come
from solving the many (very many!) body problem of computing the time-depen-
dent positions 7(z) of the 10* constituent molecules of a fluid subject to intermo-
lecular forces from all of the other 10**> molecules. Such an approach is analytically
intractable even if one knew what the intermolecular forces were. Trying to



compute analytically the behavior of, e.g., Vicsek’s algorithm directly would be the
corresponding, and equally impossible, approach to the flocking problem.

Instead, the way we understand fluid mechanics is by writing down a set of
continuum equations—the Navier-Stokes equations—for a continuous, smoothly
varying number density p(7,¢) and velocity #(7,¢) fields describing the fluid.

Although we know that fluids are made out of atoms and molecules, we can define
“coarse-grained” number density p(7,¢) and velocity ¥(7, ¢) fields by averaging over
“coarse-graining” volumes large compared to the intermolecular or, in the flocks,
“interbird” spacing. On a large scale, even discrete systems /ook continuous, as we
all know from close inspection of newspaper photographs and television images.

In writing down the Navier-Stokes equations, one ‘““buries one’s ignorance” [13]
of the detailed microscopic dynamics of the fluid in a few phenomenological
parameters, namely the mean density po, the bulk and shear viscosities #g and
ns, the thermal conductivity x, the specific heat ¢,, and the compressibility y. Once
these have been deduced from experiment (or, occasionally, and at the cost of im-
mense effort, calculated from a microscopic model), one can then predict the out-
comes of all experiments that probe length scales much greater than a spatial
coarse-graining scale ¢, and timescales >>ty, a corresponding microscopic time,
by solving these continuum equations, a far simpler task than solving the micro-
scopic dynamics.

But how do we write down these continuum equations? The answer to this ques-
tion is, in a way, extremely simple: we write down every relevant term that is not ru-
led out by the symmetries and conservation laws of the problem. In the case of the
Navier—Stokes equations, the symmetries are rotational invariance, space and time
translation invariance, and Galilean invariance (i.e., invariance under a boost to a
reference frame moving at a constant velocity), while the conservation laws are con-
servation of particle number, momentum, and energy.

“Relevant,” in this specification means terms that are important at large-length
scales and long timescales. In practice, this means a “gradient expansion’: we only
keep in the equations of motion terms with the smallest possible number of space
and time derivatives. For example, in the Navier—Stokes equations we keep a viscous
term 7, V>, but not a term yV*%, though the latter is also allowed by symmetry, be-
cause the yV*7 term involves more spatial derivatives, and hence is smaller, for slow
spatial variation, than the viscous term we have already got.

In Section 2, we will review the formulation and solution of such a hydrodynamic
model for “ferromagnetic” flocks in [14-16].

In addition to these symmetries of the questions of motion, which reflect the
underlying symmetries of the physical situation under consideration, it is also neces-
sary to treat correctly the symmetries of the state of the system under consideration.
These may be different from those of the underlying system, precisely because the
system may spontaneously break one or more of the underlying symmetries of the
equations of motion. Indeed, this is precisely what happens in the ordered state of
a ferromagnet: the underlying rotation invariance of the system as a whole is broken
by the system in its steady state, in which a unique direction is picked out—namely,
the direction of the spontaneous magnetization.



As should be apparent from our earlier discussion, this is also what happens in a
spontaneously moving flock. Indeed, the symmetry that is broken—rotational—and
the manner in which it is broken—namely, the development of a nonzero expectation
value for some vector (the spin S in the ferromagnetic case; the velocity (7) in the
flock) are precisely the same in both cases [7].

Many different “phases” [17], in this sense of the word, of a system with a given
underlying symmetry are possible. Indeed, we have already described two such
phases of flocks: the “ferromagnetic’” or moving flock, and the “disordered,” “para-
magnetic,” or stationary flock.

In equilibrium statistical mechanics, this is precisely how we classify different
phases of matter: by the underlying symmetries that they break. Crystalline solids,
for example, differ from fluids (liquid and gases) by breaking both translational
and orientational symmetry. Less familiar to those outside the discipline of soft
condensed matter physics are the host of mesophases known as liquid crystals,
in some of which (e.g., nematics [18]) only orientational symmetry is broken, while
in others, (e.g., smectics [18]) translational symmetry is only broken in some direc-
tions, not all.

It seems clear that, at least in principle, every phase known in condensed matter
systems could also be found in flocks. To date, hydrodynamic models have been for-
mulated for three such phases: the paramagnetic and ferromagnetic state [14—
16,19,20] and the nematic [21] state. In intriguing contrast to the situation in thermal
equilibrium systems, the long-wavelength stability of such phases is found to depend
on the type of dynamics (momentum-conserving versus nonconserving, inertial ver-
sus viscosity-dominated) obeyed by the system [19,21].

In particular, the theoretical work on the ferromagnetic state explains how such
systems ‘“‘get around”’ the Mermin—-Wagner theorem, and exhibit long-ranged order
even in d = 2.

In Section 5, we summarize the theoretical work on what we call “‘nematic’ flocks,
which are flocks in which the motion and/or orientation of the creatures picks out an
axis, but not a sense along that axis. This could happen (for example, but not exclu-
sively) if the system settled down into a state in which creatures moved preferentially
along the x axis, say, half in the +x and half in the —x direction with the +x and —x
creatures well mixed. The state would then have zero mean velocity for the flock, but
would be uniaxially ordered. Nematic phases have been observed in, e.g., living mel-
anocytes [9]. Dynamical states of exactly the same symmetry occur in agitated gran-
ular materials composed of long, thin grains [22-24]. Surprisingly, even though such
flocks have no net motion, the continuum theory for this state, developed along the
same lines as that for the ferromagnetic state, predicts that their behavior is very dif-
ferent from that of conventional equilibrium nematic liquid crystals, despite the fact
that they have the same symmetry, just as ferromagnetic flocks are quite different
from their equilibrium counterparts.

In addition to changing which symmetries are broken (i.e., which phase we are
considering) in a flock, we can also consider different underlying symmetries. The
simplest such change of underlying symmetry is considered in Section 4, in which
we treat ferromagnetic flocks which move in a non-rotationally invariant environ-



ment. Specifically, we consider “‘easy-plane’” models, in which the “birds’ prefer to
fly in a particular plane (e.g., horizontally), which is obviously the case for many real
examples.

A more dramatic change is to restore Galilean invariance. The work on ferromag-
netic and nematic flocks described above dealt with systems lacked this symmetry,
which is usually included in fluid mechanics. To lack Galilean invariance simply
means that the equations of motion do not remain the same in a moving coordinate
system. This is appropriate if we are modeling creatures moving in the presence of
friction over (or through) a static medium; e.g., wildebeest moving over the surface
of the Serengeti plane, bacteria crawling over the surface of a Petri dish, etc. It is
equally clearly not appropriate for creatures moving through a medium which is it-
self fluid (e.g., the air birds fly through, the water fish swim through). In these cases,
there is an additional symmetry (Galilean invariance) not present in the previous
models, which leads to additional conservation laws (of total momentum of flock
plus background fluid), which in turn lead to additional hydrodynamic variables
(e.g., total momentum density), and a completely different hydrodynamic descrip-
tion.

Hydrodynamic models of both ferromagnetic and nematic flocks moving
through such a background fluid [19] are reviewed in Section 6, where it is shown
that nematic flocks in suspension have an inviscid instability at long wavelengths.
The most striking prediction of this section, however, is that “ferromagnetic”
flocks in suspension are unstable at sufficiently low Reynolds number. This means
it is impossible in principle to find long-range ordered swimming bacteria; in the
absence of external aligning fields, a large flock of bacteria initially all swimming
in the same direction must break up into finite flocks with velocities uncorrelated
from flock to flock. The section also summarizes predictions [20] for novel rheo-
logical properties of isotropic flocks as their correlation length and time are in-
creased. Experimental evidence for the instability of ferromagnetic flocks in
suspension is reviewed in Section 7, along with many other experiments done
on flocking.

In Section 8, we discuss a number of experiments we would like to see done. The-
ory is currently far ahead of experiment in this field, an unhealthy situation that can
be corrected by careful measurements of fluctuations in flocks to test, quantitatively,
the many detailed predictions that are available from the theories described in Sec-
tions 2-5.

Finally, in Section 9, we discuss possible directions for future research in this area.
We hope to make clear there that the subject of flocking is an extremely rich and fer-
tile one, the surface of which we have scarcely scratched. In particular, as discussed
earlier, virtually every one of the dozens of phases known in soft condensed matter
physics should have an analog in flocks. So far, as mentioned earlier, only three of
these phases have even had their hydrodynamics formulated, and only two of them
(the ordered ferromagnetic and nematic states) have really been investigated thor-
oughly. The study of the rich variety of other possible phases of flocks therefore re-
mains a wide open subject, potentially as intriguing as any in Condensed Matter of
Physics, as well as being of obvious interest to anyone interested in biology, zoology,



and dynamical systems. We hope that this review will stimulate further research on
this rich, fascinating, and still largely unexplored subject.

The remainder of this paper is organized as follows: in Section 2, we review the
hydrodynamic theory of ferromagnetic flocks in isotropic (i.e, fully rotationally
invariant) environments. In Section 3, we describe numerical experiments confirming
the theory in detail, and addressing the phase transitions in these systems as well. In
Section 4, we consider “easy-plane” models, in which the “birds” prefer to fly in a
particular plane (e.g., horizontally), which is obviously the case of many real exam-
ples. In these models, the positions of the birds are fully extended over 3 (or, as a
theorist’s toy model, more) dimensions; it is just the velocities of the birds that lie
preferentially in a plane (e.g., consider a tall, broad, and deep flock of flamingoes fly-
ing horizontally). In Section 5, we discuss nematic flocking, while Section 6 treats the
incorporation of “solvent hydrodynamic effects’ (e.g., the motion of the background
fluid) on ferromagnetic, nematic, and disordered flocks. In Section 7, we discuss the
experimental work that has been done to date testing some of these ideas, while in
Section 8 we provide a “wish-list” of experiments we would like to see done, which
would provide detailed quantitative tests of the theories we describe here. This sec-
tion will also lay out in detail precisely what those quantitative predictions are, and
how experiments can test them. Experimentalists interested in testing our ideas
should proceed directly to this section, which is fairly self-contained.

And finally, we conclude in Section 9 by suggesting several directions for future
work. Our list is necessarily abbreviated; any clever reader can no doubt think of
many equally fascinating problems in this area which are not on our list, but should
be studied. This is a fascinating field with room for many more researchers, both the-
oretical and experimental.

2. Isotropic ferromagnetic flocks
2.1. Formulating the hydrodynamic model

In this section, we will review the derivation and analysis of the hydrodynamic mod-
el of ferromagnetic flocks. A more detailed discussion can be found in [16]. As discussed
in Section 1, the system we wish to model is any collection of a large number N of organ-
isms (hereafter referred to as “birds”) in a d-dimensional space, with each organism
seeking to move in the same direction as its immediate neighbors.

We further assume that each organism has no “compass’’; in the sense defined in
Section 1, i.e., no intrinsically preferred direction in which it wishes to move. Rather,
it is equally happy to move in any direction picked by its neighbors. However, the
navigation of each organism is not perfect; it makes some errors in attempting to fol-
low its neighbors. We consider the case in which these errors have zero mean; e.g., in
two dimensions, a given bird is no more likely to err to the right than to the left of
the direction picked by its neighbors. We also assume that these errors have no long
temporal correlations; e.g., a bird that has erred to the right at time 7 is equally likely
to err either left or right at a time ¢/ much later than ¢.



The continuum model will describe the long distance behavior of any flock satis-
fying the symmetry conditions we shall specify in a moment. The automaton studied
by Vicsek et al. [5] described in Section 1 provides one concrete realization of such a
model. Adding “bells and whistles” to this model by, e.g., including purely attractive
or repulsive interactions between the birds, restricting their field of vision to those
birds ahead of them, giving them some short-term memory, etc., will not change
the hydrodynamic model, but can be incorporated simply into a change of the
numerical values of a few phenomenological parameters in the model, in much the
same way that all simple fluids are described by the Navier—Stokes equations, and
changing fluids can be accounted for simply by changing, e.g., the viscosity that ap-
pears in those equations.

This model should also describe real flocks of real living organisms, provided that
the flocks are large enough, and that they have the same symmetries and conserva-
tion laws that, e.g., Vicsek’s algorithm does.

So, given this lengthy preamble, what are the symmetries and conservation laws of
flocks?

The only symmetries of the model are invariance under rotations and transla-
tions. Translation-invariance simply means that displacing the positions of the
whole flock rigidly by a constant amount has no physical effect, since the space
the flock moves through is assumed to be on average homogeneous [25]. Since we
are not considering translational ordering, this symmetry remains unbroken and
plays no interesting role in what follows, any more than it would in a fluid. Rotation
invariance simply says the “birds” lack a compass, so that all direction of space are
equivalent to other directions. Thus, the “hydrodynamic” equation of motion we
write down cannot have built into it any special direction picked “a priori”; all
directions must be spontaneously picked out by the motion and spatial structure
of the flock. As we shall see, this symmetry severely restricts the allowed terms in
the equation of motion.

Note that the model does not have Galilean invariance: changing the velocities of all
the birds by some constant boost 7}, does not leave the model invariant. Indeed, such a
boost is impossible in a model that strictly obeys Vicsek’s rules, since the speeds of all the
birds will not remain equal to v, after the boost. One could image relaxing this con-
straint on the speed, and allowing birds to occasionally speed up or slow down, while
tending an average to move at speed vo. Then the boost just described would be possi-
ble, but clearly would change the subsequent evolution of the flock.

Another way to say this is that birds move through a resistive medium, which pro-
vides a special Galilean reference frame, in which the dynamics are particularly sim-
ple, and different from those in other reference frames. Since real organisms in flocks
always move through such a medium (birds through the air, fish through the sea, wil-
debeest through the arid dust of the Serengeti), this is a very realistic feature of the
model [26].

As we shall see shortly, this lack of Galilean invariance allows terms in the hydro-
dynamic equations of birds that are not present in, e.g., the Navier—Stokes equations
for a simple fluid, which must be Galilean invariant, due to the absence of a luminif-
erous ether.



The sole conservation law for flocks is conservation of birds: we do not allow
birds to be born or die “on the wing.”

In contrast to the Navier—Stokes equation, there is no conservation of momentum
in the models discussed in this section. This is, ultimately, a consequence of the ab-
sence of Galilean invariance.

Having established the symmetries and conservation laws constraining our model,
we need now to identify the hydrodynamic variables. They are precisely the same as
those of a simple fluid [27]: the coarse grained bird velocity field ¥(7 ¢), and the
coarse grained bird density p(¥, ¢). The field #(7, ¢), which is defined for all 7, is a suit-
able weighted average of the velocities of the individual birds in some volume cen-
tered on 7. This volume is big enough to contain enough birds to make the
average well-behaved, but should have a spatial linear extent of no more than a
few “microscopic” lengths (i.e., the interbird distance, or by a few times the interac-
tion range Ry). By suitable weighting, we seek to make ¥(¥, ¢) fairly smoothly varying
in space.

The density p(7,¢) is similarly defined, being just the number of particles in a
coarse graining volume, divided by that volume.

The exact prescription for the coarse graining should be unimportant, so long as
p(7,t) is normalized so as to obey the “sum rule” that its integral over any macro-
scopic volume (i.e., any volume compared with the aforementioned microscopic
lengths) be the total number of birds in that volume. Indeed, the coarse graining
description just outlined is the way that one imagines, in principle, going over from
a description of a simple fluid in terms of equations of motion for the individual con-
stituent molecules to the continuum description of the Navier—Stokes equation.

We will also follow the historical precedent of the Navier—Stokes [13,28] equation
by deriving our continuum, long wavelength description of the flock not by explicitly
coarse graining the microscopic dynamics (a very difficult procedure in practice), but,
rather, by writing down the most general continuum equations of motion for ¥ and p
consistent with the symmetries and conservation laws of the problem. This approach
allows us to bury our ignorance in a few phenomenological parameters, (e.g., the vis-
cosity in the Navier-Stokes equation) whose numerical values will depend on the de-
tailed microscopic rules of individual bird motion. What terms can be present in the
EOMs, however, should depend only on symmetries and conservation laws, and not
on other aspects of the microscopic rules.

To reduce the complexity of our equations of motion still further, we will perform
a spatio-temporal gradient expansion, and keep only the lowest order terms in gra-
dients and time derivatives of # and p. This is motivated and justified by our desire to
consider only the long distance, long time properties of the flock. Higher order terms
in the gradient expansion are “irrelevant’: they can lead to finite “renormalization”
of the phenomenological parameters of the long wavelength theory, but cannot
change the type of scaling of the allowed terms.

With this lengthy preamble in mind, we now write down the equations of motion:

08+ 4 (T V)T + (V- D)+ V(5]
= of — 5T — VP + DpV(V - §) + DV + Dy (8- V)T + 1, (6)



P=Pm):2:m@—pwﬁ (7)
op .
5+V'(Up):0, (8)

where f8, Dy, D,, and Dt are all positive, and o < 0 in the disordered phase and o > 0
in the ordered state (in mean field theory). The origin of the various terms is as fol-
lows: the A terms on the left-hand side of Eq. (6) are the analogs of the usual convec-
tive derivative of the coarse-grained velocity field ¢ in the Navier—Stokes equation.
Here the absence of Galilean invariance allows all three combinations of one spatial
gradient and two velocities that transform like vectors; if Galilean invariance did ap-
ply here, it would force 1, = 23 =0 and A; = 1. However, as we have argued above,
we are not constrained here by Galilean invariance, and so all three coefficients are
nonzero phenomenological parameters whose nonuniversal values are determined by
the microscopic rules. The o and f§ terms simply make the local ¥ have a nonzero
magnitude (= y/o/p) in the ordered phase, where o > 0. Dy 1, are the diffusion con-
stants (or viscosities) reflecting the tendency of a localized fluctuation in the veloci-
ties to spread out because of the coupling between neighboring “birds.” Amusingly,
it is these “viscous” terms that contain the “elasticity’’ of an ordered flock—the
restoring torques that try to make parallel the orientation of neighboring birds.
The f term is a random driving force representing the noise. We assume it is Gauss-
ian with white noise correlations

iF 0, 0) = 46,0°(F = 7)o(t 1), ©)

where 4 is a constant, and i, j denote Cartesian components. Finally, P is the pres-
sure, which tends to maintain the local number density p(¥) at its mean value po, and
op = p — po. Strictly speaking, here too, as in the case of the ““viscous’ terms involv-
ing Dy 15, we should distinguish gradients parallel and perpendicular to 7, i.e., gra-
dients in the density should be allowed to have independent effects along and
transverse to ¥ in (6). In an equilibrium fluid this could not happen, since Pascal’s
Law ensures that pressure is isotropic. In the nonequilibrium steady state of a flock,
no such constraint applies. For simplicity, however, we ignore this possibility here,
and consider purely longitudinal pressure forces.

The final Eq. (8) is just conservation of bird number (we do not allow our birds to
reproduce or die on the wing).

Symmetry allows any of the phenomenological coefficients 4, o, g, , and D; in
Egs. (6) and (7) to be functions of the squared magnitude |17|2 of the velocity, and of
the density p as well.

2.2. The broken symmetry ferromagnetic state

The hydrodynamic model embodied in Egs. (6)—(8) is equally valid in both the “dis-
ordered” (i.e., nonmoving) (« <0) and ‘“ferromagnetically ordered” (i.e., moving)
(o <0) state. In this section, we are mainly interested in the ‘ferromagnetically



ordered,” broken-symmetry phase; specifically in whether fluctuations around the
symmetry broken ground state destroy it (as in the analogous phase of the 2D XY mod-
el). For o> 0, we can write the velocity field as 7 = vyX + 6v, where vy } is the
spontaneous average value of ¥ in the ordered phase. We will chose vy = %* (which

should be thought of as an implicit condition on vy, since « and f can, in general, depend
on |§|2); with this choice, the equation of motion for the fluctuation dyj of v is
0,0v) = —0106p — 200y + irrelevant terms. (10)

Note now that if we are interested in “hydrodynamic modes, by which we mean
modes for which frequency w — 0 as wave vector ¢ — 0, we can, in the hydrody-
namic (w,q — 0) limit, neglect 0,0y relative to adyj in (10). The resultant equation
can trivially be solved for dyj

51]” = —(01/20()6“5,0. (11)

Inserting (11) in the equations of motion for ¥, and dp, we obtain, neglecting
“irrelevant” terms:

0,0, + “/aHl_Jl + A (I_Jl . 6L)l_)l + /Auz(ei . I_Jl>l_7'l

— ¥, P+ DV, (% : al) +DrV2E. + DL+ ], (12)
65,0 = 2
o +p, VT + V- (BLp) + 100 0p = D,0;0p, (13)

where D, = py3t, Dg, Dr, and D) = Dr + Dyv} are the diffusion constants, and we
have defined

V= /l]l)(). (14)

The pressure P continues to be given, as it always will, by Eq. (7).

From this point forward, we will treat the phenomenological parameters 4;, y, and
D; appearing in Eqgs. (12) and (13) as constants, since they depend, in our original
model (6), only on the scalar quantities |7]* and p(7), whose fluctuations in the bro-
ken symmetry state away from their mean values v} and po are small. Furthermore,
these fluctuations lead only to “irrelevant” terms in the equations of motion.

It should be emphasized here that, once nonlinear fluctuation effects are included,
the vy in Eq. (13) will not be given by the “mean” velocity of the birds, in the sense of

oL
() =——, (15)

where NV is the number of birds. This is because, in our continuum language

oy _ [P E0E 04| (o)
([ p(# 1 )d/r) (p)

while vy in Eq. (14) is
v = (U7, 1))]. (17)




Once p fluctuates, so that p ={p) + dp, the “‘mean” velocity of the birds

_|{et)| _ [{e)(®) | (9pT)
(v = o

(p) 18)

which equals vy = |(¥)| only if the correlation function (dp7) = 0, which it will not, in
general. For instance, one could easily imagine that denser regions of the flock might
move faster; in which case (dp¥) would be positive along (v). Thus, (¢¥) measured in a
simulation by simply averaging the speed of all birds, as in Eq. (15), will not be equal
to vg in Eq. (14). Indeed, we can think of no simple way to measure vy, and so chose
instead to think of it as an additional phenomenological parameter in the broken
symmetry state equations of motion (12) and (13). It should, in simulations and
experiments, be determined by fitting the correlation functions we will calculate in
the next section. One should not expect it to be given by (v) as defined in Eq. (16).

Similar considerations apply to y: it should also be thought of as an independent,
phenomenological parameter, not necessarily determined by the mean velocity and
nonlinear parameter /; through (14).

2.3. Linearized theory of the broken symmetry ferromagnetic state

As a first step towards understanding the implications of these equations of mo-
tion, we linearize them in ¥, and dp = p — po. Doing this, and Fourier transforming
in space and time, we obtain the linear equations:

(o) + @51 (. 0) = F1(.0), (19)

=i(@=vq)) + 1L(@] o0 + 019,00 = /.G, ), (20)

=i( = vogy) + I,(@)] 00 +ippg o0 =0, (21)
where o

0 (q.0) = LT (22)
and =

t(F, 0) = 5.(g, ) — (23)

q. o
are the longitudinal and transverse (to ¢, ) pieces of the velocity, f (¢, @) and f1.(¢, ®)

are the analogous pieces of the Fourier transformed random forcef((}’, ), and we have
defined wavevector dependent transverse, longitudinal, and p dampings I'r 1 ,:

I'.(§) = Doq} + Dyqf, (24)
I't(q) = Drq’ + Dyqj, (25)
Fp(q) = qu\zp (26)

where we have defined Dy = Dr+ Dg, q, =17, |-



Note that in d = 2, the transverse velocity vt does not exist: no vector can be per-
pendicular to both the x| axis and ¢, in two dimensions. This leads to many impor-
tant simplifications in d = 2, as we will see later; these simplifications make it (barely)
possible to get exact exponents in d =2 for the full, nonlinear problem.

It is now a straightforward exercise in linear algebra to solve these linearized
equations for the hydrodynamic mode structure of a flock. By “hydrodynamic
mode-structure” we simply mean the eigenfrequencies w(g) of the homogeneous
equations obtained by setting the noise term f =0. It is just as straightforward to
solve these linearized equations for #(7, ) and p(g,®) in terms of f(F,w). Using
the known correlations of f from Eq. (9) given earlier, one can thereby straightfor-
wardly compute the correlations of #(¢, w) and p(q4, ) with each other, and with
themselves. Readers interested in the details of these calculations are referred to
[16]; here we simply summarize the results.

The normal modes of these equations are d — 2 purely diffusive transverse modes
associated with ¥, all of which have the same eigenfrequency

ot = yq, —ilt(§) = yq — i(DTqi +Duqﬁ) (27)

and a pair of damped, propagating sound modes with complex (in both senses of the

word) eigenfrequencies
ws = ci(0;)q —il'L [”i(eﬂ —ir, F(Q‘?)}

262(05) 202(05)
= cs(O9)a — (01t + D) || — D [5G . (28)

where 0; is the angle between g and the direction of flock motion (i.e., the x| axis):
_Yto

Ci(eq) = 3 COS(@,?) + 6‘2(0;1’), (29)
vy (0;) = £ _2“0 cos(0;) + e2(0), (30)
o (0;) = \/% (y— vo)zcosz(@;) + césinz(Qq)7 (31)

and ¢o = ,/g1py. A polar plot of this highly anisotropic sound speed is given in
Fig. 2.

We remind the reader that here and hereafter, we only keep the leading order
terms in the long wave length limit, i.e., for small g and ¢,.

These direction-dependent sound speeds can most easily be determined experi-
mentally by measuring the spatio-temporally Fourier-transformed density—density
correlation function C,,(¢, w) = (|p(q, o)*). We will describe in detail in Section 7
how to easily obtain this correlation function from observation of a flock via, e.g.,
computer imaging of a film. The linearized calculation described above predicts that
this density—density correlation function, when considered as a function of frequency
o, has two sharp peaks at o = ¢, (0;)g, with widths of O(¢?), as illustrated in Fig. 3.
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Fig. 2. Polar plot of the direction-dependent sound speeds c4 (60;), with the horizontal axis along the
direction of mean flock motion.

C,(qw)

Im(®,)~q,”

c(6,)q ¢,(0,)q

Fig. 3. Plot of the spatio-temporally Fourier-transformed density correlation function C,(g, w) versus o
for fixed g. It shows two sharp asymmetrical peaks at w = c.(0;)q associated with the sound modes of the
flock, where c. (0;) are the sound mode speeds. The widths of those peaks are the second mode dampings
Ima. (05) qifi( 20 )

(ato))"

We call these peaks “sharp” precisely because their widths, for ¢ — 0, are much
smaller than their displacement from the origin (of w). Indeed, as ¢ — 0, they be-
come infinitely sharp in this sense.

All of the above results persist in the full, nonlinear theory we will describe later
except the scaling of the widths, which becomes anisotropic and “anomalous,” as



will be described in Section 2.4. The peaks do remain sharp, however, and their posi-
tions are correctly predicted by the linearized theory.
The exact expression for C,,(¢, w) that we obtain is

c o Apiat .
" (0= e (09)9) (0 — e (07)q) + (o(I'L(@) + T,(@)) — g, (vl L(§) + 7T,(3)))’
(32)

We can similarly find the velocity autocorrelations

Cii(q, ) = (v (=G, —w)v; (§,®)) = Crr(q, w)P;(§) + Cuo(q, w)L;;(g),  (33)
where:
o 4q
L;(q) = qij : (34)
1/=\ — gL 1 /=
Pij(‘l) = ‘3;']' - Lij(q)7 (35)

are longitudinal and transverse projection operators in the plane perpendicular to
the mean flock motion

A
(0 — WH)Z + F%(‘_j)

Crr(q, ) = (36)

and
A((w—voq))* +T2(§))

(0= (0g)9)* (@ = c-(05)q)’ + (o(I'L(G) + T (@) — gy (0T L(@) +7T,(@))"
(37)

CrL(q, )=

The transverse and longitudinal correlation functions in Egs. (36) and (37) are plot-
ted as functions of w for fixed ¢ in Fig. 4.

Note that they have weight in entirely different regions of frequency: Crr is
peaked at w = yq|, while Cy, like C,,, has two peaks, at w = ¢ (0;)q. Since all three
peaks have widths of order ¢°, there is little overlap between the transverse and the
longitudinal peaks as |§| — O.

With the velocity correlations C;;(¢, w) in hand, we can now address the question
which first caught our attention: Are birds smarter than nerds? That is, do flocks
obey the Mermin—Wagner theorem?

To answer this, we need to calculate the real-space, real-time fluctuations
(67, ).

To have true long-ranged orientational order, which is necessary to have an or-
dered, coherently moving flock, these fluctuations must remain finite as the size of
the flock goes to infinity. To calculate (|#(7,)|*) from C;;(§, ), we must Fourier
Transform back to real space 7 and real time ¢ from ¢ and w space, respectively.
Going back to real time first gives the spatially Fourier transformed equal time
velocity correlation function:



cq

Fig. 4. Plot of C1.(¢, w) and Ctr(g, w) versus w for identical fixed §. Note the smallness of the overlap
between the transverse and longitudinal peaks.

Ci/(‘_j) = <Ui(‘_jv t)uj(_q’ t)>
7@ [ PenGo)+1i@ [

Pi@ o L@)

I't(4) I'.(q)

where the second integral over frequency has been evaluated in the limit of |§| — 0,
so that ¢(0;)q > I't. o ¢, and the factor ¢(¢) depends only on the direction g of g,
not its magnitude.

The quite complicated expression for ¢(g) is given in [16]; for our power-counting
purposes, it suffices to note that ¢(g) is a smooth, analytic function of ¢ that is O(1)
and nonvanishing for all g.

The ﬁ divergence of (38) as || — 0 reflects the enormous long wavelength fluctu-
ations in this system.

These fluctuations predicted by the linearized theory are strong enough to destroy
long-ranged order in d < 2. To see this, calculate the mean squared fluctuations in
¥, (7 t) at a given point 7, and time ¢. This is simply the integral of the trace of
Eq. (38) over all 4

(o) = [ é& (0@, 0 ~7, 1)

4 / d’g @-2 __ ¢@
2| @n)? \Drg> +Dyg;  Dig’ +Dyq;

The last integral clearly diverges in the infrared (|| — 0) for d < 2. The divergence
in the ultraviolet (|| — oo) for d = 2 is not a concern, since we do not expect our

o0

dw

7C =
o (g, o)

1
O(?,

+0(q)

4
=3 (38)

. (39)




theory to apply for |g| larger than the inverse of a microscopic length (such as the
interaction range £).

Theinfra-red divergence in Eq. (39) for d < 2 cannot be dismissed so easily, since our
hydrodynamic theory should get better as |§| — 0. Indeed, in the absence of nonlinear
effects, this divergence is real, and signifies the destruction of long-ranged order in the
linearized model by fluctuations, even for arbitrarily small noise 4, in spatial dimen-
sions d < 2, and in particular in d = 2, where the integral in Eq. (39) diverges logarith-
mically in the infra-red. This is so since, if (|7, |*) is arbitrarily large even for arbitrarily
small 4, our original assumption that ¥ can be written as a mean value () plus a small
fluctuation ¥, is clearly mistaken; indeed, the divergence of ¥, suggests that the velocity
can swing through all possible directions, implying that () = 0 for d < 2.

In d = 2, this result is very reminiscent of the familiar Mermin—Wagner—Hohen-
berg (MWH) theorem[12], which states that in equilibrium, a spontaneously broken
continuous symmetry is impossible in d = 2 spatial dimensions, precisely because of
the type of logarithmic divergence of fluctuations that we have just found here. In-
deed, to the linear order we ave worked here, this model looks just like an equilib-
rium model. All of the crucial differences between the equilibrium model and our
flocking model must therefore lie in the nonlinearities. In the next section, we will
show this is indeed the case: much of the scaling of correlation functions and prop-
agators is changed from that predicted by the linearized theory in spatial dimensions
d < 4. Most dramatically, this change in scaling makes it possible for flocks to devel-
op long-ranged order even in d = 2, even though equilibrium systems cannot.

2.4. Non-linear effects and breakdown of linear hydrodynamics in the broken symmetry
state

2.4.1. Scaling analysis

In this section, we analyze the effect of the nonlinearities in Egs. (12) and (13) on
the long length and time behavior of the system, for spatial dimensions d < 4. We will
rescale lengths, time, and the fields ¢, and dp according to:

)_Cl — b)_Cl,

x) — by,

t — bt (40)

EL — bzl_)l,

op — b*ép.
We begin by constructing the scaling which preserves the structure of the linearized
theory, and then see if the nonlinearities grow or shrink under this rescaling. Accord-
ingly, we first choose the scaling exponents to keep the diffusion constants Dg 1, ,
and the strength A of the noise fixed. The reason for choosing to keep these partic-
ular parameters fixed rather than, e.g., a1, is that these parameters completely deter-
mine the size of the equal time fluctuations in the linearized theory, as can be seen

from Eq. (39). Under the rescalings (40), the diffusion constants rescale according

to Dgt— b:_ZDB,T and D, — b:_ngp,H? hence, to keep them fixed, we must choose



z=2and { = 1. The rescaling of the random force ]7 can then be obtained from the
form of the f— f correlations Eq. (9) and is, for this choice of z and (

f bRy (41)

To maintain the balance between f and the linear terms in ¥, in Eq. (12), we must
choose

1=1-d)2 (42)

in Eq. (40). y is the roughness exponent for the linearized model, i.e., we expect U
fluctuations on length scale L to scale like L*. Therefore, the linearized hydrody-
namic equations, neglecting the nonlinear convective terms and the nonlinearities
in the pressure, imply that ¥, fluctuations grow without bound (like L*) as L — oo
for d < 2, where the above expression for y becomes positive. Thus, this linearized
theory predicts the loss of long range order in d < 2, as we saw in the last section
by explicitly evaluating the real space fluctuations.

Making the rescalings as described in Eq. (40), the equation of motion (12)
becomes

0,0y + B ydyBL + b A (B - V1)BL + (VL - .5,

-V, (Z b a,,(ap)"> + DV (Vy 5)+DrVis, + Do, +f,  (43)
n=1

with:
=+ 1=2-4d/2, (44)

Vv:Z_Z::L (45)
and
d
v=z—y+ny—1l=n+(1 —n)i
The scaling exponent y, for dp is given by y, = y, since the density fluctuations ép
are comparable in magnitude to the ¥, fluctuations. To see this, note that the eigen-
mode of the linearized equations of motion that involves dp is a sound mode, with
dispersion relation o = c.(0;)q. Inserting this into the Fourier transform of the con-
tinuity Eq. (13), we see that dp ~ % The magnitude of ¢, drops out of the right
hand side of this expression; hence 3p scales like |7, | at long distances. Therefore,
we will choose y, =y =1 —4.

The first two of these scaling exponents for the nonlinearities to become positive
as the spatial dimension d is decreased are y; and 7,, which both become positive for
d < 4, indicating that the 4,(%, - V)7,, (V. -7.)7, and 6,V (dp?) nonlinearities
are all relevant perturbations for d <4. So, for d <4, the linearized hydrodynamics
will break down.

A very similar breakdown of linearized hydrodynamics has long been known [28]
to occur in simple equilibrium fluids for d < 2. Somewhat less well-known is the
more dramatic, and experimentally verified, breakdown of linearized hydrodynamics
that occurs in equilibrium smectic [29] and columnar [30] liquid crystals.

(46)



What can we say about the behavior of Egs. (12) and (13) for d <4, when the lin-
earized hydrodynamics no longer holds? The answer is provided by the dynamical
renormalization group, whose results we summarize in the next two sections. The
first of these presents the general form of the results in arbitrary spatial dimensions
d with 2 < d < 4, while the second presents results in d = 2 exactly, in which case we
can obtain exact exponents.

2.4.2. Renormalization group analysis, d <4

In this section, we summarize the results of the dynamical renormalization group
analysis of the effect of the nonlinearities in the flock equations of motion. Readers
interested in the details of the analysis (which are quite involved) are referred to [16].

The simplest summary of the scaling of al/l correlation functions and propagators
is: simply use the harmonic expressions for them, except that the diffusion constants
D+ 3, should be replaced by wavevector-dependent quantities that diverge as § — 0,
according to the scaling laws

<(—_>)> 0

the bare noise strength A4 should be replaced by

Drs,(@) =47 fre, <

o g, \i2d (%)
4@ =4.(%) fi <(q_)g (48)
A
and the diffusion constant Dy should be replaced by
&
Dy(@) = ¢/ (49)
(%)

The scaling functions f g T, (%) in these expressions have the following asymp-
totic limits:

constant, u — 0,
Srop(u) o< (50)
ut, u — 00,
constant, u — 0,
Sa(u) o< 4 cap (51)
U <, u— o0,
and
constant, u — 0,
fii(u) o { ) (52)
ut e, U — 00.

Here A ~ 1/fxy is an ultraviolet cutoff, with £y the length scale at which nonlinear
effects become important. a one-loop RG analysis predicts: Iy ~ (IODi/ 4D|1‘/ 4 /
24" @ ED) 5 O(1). Higher loop corrections may affect this result, but it presumably
remains accurate to factors of O(1).



The form of these scaling functions is such that the renormalized diffusion con-
stants and the noise strength depend only on ¢ for 4 > (4)°, and only on ¢, in
the opposite limit. That is:

DT-,B‘/)(ZI) X =2 ( r (53)

qz—g—z;ﬁl—d q) < ﬂ)s
- ’ A A ’
A(q X —241d ! N (54)
q ’ , 1> (TL) ,
and
G < ),
D@ oy =0 4 (55)
qH ) A (7)

None of the other parameters of the linearized theory is appreciably affected by the
nonlinearities (beyond finite renormalizations). In particular, the sound speeds
remain given by Eq. (29), with all of the parameters in that equation remaining
constants as ¢ — 0.

The divergence of these diffusion “constants” and noise correlations as ¢ — 0 is
the “breakdown of linearized hydrodynamics” that we argued in the last section
would occur below d = 4.

The physics of this breakdown is very simple: above d = 4, where the breakdown
does not occur, information about what is going on in one part of the flock can be
transmitted to another part of the flock only by being passed sequentially through
the intervening neighbors via the assumed short-ranged interactions. Below d = 4,
where the breakdown occurs, this slow, diffusive transport of information is replaced
by direct, convective transport: fluctuations in the local velocity of the flock become
so large, in these lower dimensions, that the motion of one part of the flock relative
to another becomes the principal means of information transport, because it be-
comes faster than diffusion. There is a sort of “negative feedback,” in that this im-
proved transport actually suppresses the very fluctuations that give rise to it [31],
leading to long-ranged order in d = 2, as we will see in the next section.

The dynamical exponent z, the roughness exponent y, and the anisotropy expo-
nent { completely characterize the scaling of the dynamics of flocks. Unfortunately,
we have been unable to calculate them in any dimension except d = 2. All we know is
6/5<z<2, y<min(—1/5,1 — d/2), and 3/5<{ <1 for2<d<4.

The origin of our uncertainty is the 4, term in Eq. (12). When 1, = 0, the structure
of the theory is such that we can determine the exponents y, z, and { exactly. (Details
of the somewhat involved argument are given in [16]; here we will simply sketch the
reasoning.) This is because, when A, = 0, all of the relevant pieces of the remaining
vertices are total L derivatives. It is straightforward to show that an immediate con-
sequence of this is that 4 and Dy , acquire no graphical renormahzat10n when /1, = 0.
The requirement that 4, Dy, and D, flow to fixed points ( O %) =0 =94 leads to two



independent exacéDscaling relations between the three independent exponents y, z,
and {. Requiring —* = 0 implies

2= (56)
while requiring 9 = 0 leads to
=42 4d—1. (57)

We emphasize that we have only shown that these relations (56) and (57) hold when
/12 = O

We can obtain a third independent exact scaling relation between these three
exponents, and thereby determine them exactly, when 1, = 0, by exploiting a “pseu-
do-Galilean™ invariance that the equations of motion (12) and (13) have when
/1 = A, which leads to a exact scaling relation, namely

r=1-—z (58)

The three relations ((56)—(58) that hold when A, =0 can trivially be solved, to find
the exact scaling exponents in all d <4 that describe flocks with A, = 0:

d+1
,_2d+1) (60)
5
and
3—-2d

Note that these match continuously, at the upper critical dimension d = 4, onto their
harmonic values { =1, z=2, and y = 1 —4 = —1, as they should.

But can A, be ignored? Only if it renormalizes to zero. We have performed a
dynamical RG analysis of this question, and find that A, is unrenormalized at one
loop order, leading to an apparent fixed line at that order. Since we do not know
what happens to 4, at higher order, all we can say at this point is that there are three
possibilities:

1. At higher order, 4, renormalizes to zero. If this is the case, then Eq. (59)—(61) hold
exactly, for all flocks, for d in the range 2 < d < 4. Note that these results linearly
interpolate between the equilibrium results z=2, (=1, and y =1 —% in d=4,
and our 2d results z =6/5, { =3/5,and y = —-1/5ind=2.

2. At higher order, 1, grows upon renormalization and reaches a nonzero fixed point
value 4; at some new fixed point that differs from the A, = 0 fixed point we have
studied previously, at which Eqgs. (59)—-(61) holds. The exponents y, z, and { would
still be universal (i.e., depend only on the dimension of space d) for all flocks in
this case, but those universal values would be different from Egs. (59)—(61).

3. A, is unrenormalized to all orders. Should this happen, 7, would parameterize a
fixed line, with continuously varying values of the exponents z, y, and (.



We reiterate: we do not know which of the above possibilities holds for d > 2.
However, whichever holds is universal; that is, only one of the three possibilities
above applies to all flocks. We do not, however, know which one that is.

In any case, the exponents z, y, and { completely characterize the scaling of the
dynamics and fluctuations in flocks for all dimensions d in the range 2 < d < 4. This
can be seen by looking at any of the quantities we calculated in our linearized treat-
ment in Section 2.3. For example, the full dispersion relation for the sound modes is

U
which follows from Eq. (28) upon replacing the diffusion constants with their wave-
vector-dependent values in Egs. (47) and (49). The scaling function £ in this expres-
sion obeys

tant, — 0,
Folw) o {ci)/r;s ant, u (63)
u Y

u — OoQ.

As a result, the attenuation of sound scales like ¢7 for 2 <« (%)‘V, and like q‘z‘/ ¢ for

L (L)

! As </iliscussed in Section 2.3, the dispersion relations for w, and w, can be directly
probed by measuring the spatio-temporally Fourier transformed density—density and
velocity—velocity auto-correlation functions C,,(¢, w) and Cy;(q, »).

These take exactly the same form as predicted in Section 2.3, with the replacement
of the diffusion constants D, g1 with the wavevector-dependent quantities given in
Egs. (47) and (49).

As a result, the two sharp peaks in C,, at @ =cy (07)g, now have width

ﬂ , opeeeae
o ¢ fi(gly) and height oc g =7
A

g( (,,_?H);), rather than the ¢ and ¢ * scaling
predicted by the linearized theory. Thus, c.(0;) can be simply extracted from the po-
sition of the peaks, while the exponents y, z, and { can be determined by comparing
their widths and heights for different ¢’s.

Fourier transforming C;;(¢, w) back to real time gives an equation of the same form
as (38), but with I't 7(§) and 4 modified from their linearized forms by the same
replacement of D’s and 4 by their renormalized, wavevector-dependent values Egs.
((47)—(49). This implies that the equal-time velocity correlation C;;(§) obeys the scaling
laws:

qzi—g—2z-¢—l—al7 % < (%)g7
Cij(q) ox §  =rapa ) (64)
q . A>EG)

Since z <2 and { < 1, these results imply that, for all d <4, equal-time velocity
fluctuations diverge more slowly than 4 (the latter being both the equilibrium result
and that obtained by the linearized theory).

This suppression of fluctuations in Fourier space leads to fluctuations in real
space that are finite, even in d =2, as we will show in detail in the next section.
Specifically
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remains finite, even in d = 2.

So far, our discussion has focussed on velocity fluctuations. The density p(7,¢)
shows huge fluctuations as well: indeed, at long wavelengths, the fluctuations of
the density of birds in a flock become infinitely bigger than those in a fluid or an ideal
gas. This fact is obvious to the eye in a picture of a flock. Quantitatively, Fourier
transforming C,,(¢, ) back to real time yields the spatially Fourier transformed,
equal time density—density correlation function C,,(§) = (|p(d, 1)[*), which obeys
the scaling law:

1-d—(-2y

. . 9. ) q) <4y,
I A 7 2 3d-0-2 g\« 4l < 4L
Cop(q) = o Jo @ )g Y(07) < § 9791 ) <A> > >0,
A 3y ldy 3
q T4, (%) <7,

(66)

where Y (0;) is a finite, nonvanishing, O(1) function of the angle 0; between the
wavevector ¢ and the direction of mean flock motion, ¢ and ¢, are the wavevectors
parallel and perpendicular to the broken symmetry direction, and ¢, = |g, |.

The most important thing to note about C,(g) is that it diverges as |§| — 0, unlike
C,(q) for, say, a simple fluid or gas, or, indeed, for any equilibrium condensed matter
system, which goes to a finite constant (the compressibility) as || — 0.

This completes our discussion of the behavior of the full, nonlinear model in
dimensions d between 2 and 4. We now turn to the behavior of the model in
d = 2, where we can actually determine the exponents exactly.

2.4.3. Ferromagnetic flock exponents in d =2

In the last section, we argued that the three exponents z, y, and { which completely
determine the scaling properties of the flock can be determined exactly if only one
could show that 1, — 0 upon renormalization.

However, in d =2, any flock is equivalent to a flock with 4, = 0. This is because
the 4; and 4, vertices become identical in d = 2, where ¥, has only one component,
which we will take to be x. That is, in d = 2:

. 1
j.] (l_J'l . VL)UJ_ = )»1)ACUXaXUX = E/llax(l)i))%, (67)
Ja(VL - BL)BL = k(00 )0y = %zzax(vg)x, (68)

so that the full ¥, nonlinearity becomes %(il + 72)0,(v?)%, which is just what

we would get if we started with a (primed) model with Z; = 0 and 4| = A; + 4,. This



latter model, since it has 4, = 0, must have the “canonical” exponents (59)—(61)
hence, so must the (4;,4,) model, which includes all possible d =2 models. So all
models in d =2 must have the canonical exponents (59)—(61).

Setting d =2 in (59)—(61), we obtain:

3
=, (70)
1

Note, in particular, that y < 0. This implies, as discussed earlier, that the flock exhib-
its true long-ranged order.

Using the exponents (69)—(71) in the general scaling relations, such as (64) and
(66), we obtain all of the scaling results for correlation functions in d = 2. Note also
that for this set of exponents z — { — 2y + 1 — d = 0. Hence, from Eq. (48), we see
that the noise strength 4 is a constant, independent of ¢, which makes sense since
A is unrenormalized graphically. So, in the d = 2 model, we can calculate all corre-
lation functions from their harmonic expressions, except that we replace the diffusion
constants Dg 1 with functions that diverge as § — 0 according to the scaling laws

L s (%)
DB,T(q) q. / .fB,T 4 3/5 | (72)
(%)

where we have used the exact d =2 exponents z = 6/5 and { = 3/5 in the general
scaling law (47). D) ,, on the other hand, are, like 4, constants, since z = 2{ (see gen-
eral Eq. (49)), which also makes sense since D), are unrenormalized graphically.
Hence, the only replacement needed to turn the harmonic results into the correct
results for the full, nonlinear theory in d =2 is (72). Therefore, in d =2, { = 3/5,
and y = —1/5

—6
o o g <aq.
q _ 3/5
Cpp( ) = f/ ( qj‘ 3/5> Y(@q) o8 qHZQ‘l/Sy (qL) / > q” > %7 (73)
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These scaling predictions agree extremely well with numerical simulations [15,16],
as we will discuss in detail in the next section.

3. Comparison with numerical simulations

Many aspects of flocking dynamics are too complex to be tractable analytically.
Numerical simulation thus becomes an important and necessary tool in exploring
the rich phenomena in various flocking models. Even though the concept of simulat-



ing collective behaviors in self propelled systems was introduced to the physics com-
munity by Vicsek et al. [5], computer models for flocks, not surprisingly, were used
earlier in disciplines as diverse as ecology and computer graphics[1], albeit with dif-
ferent emphasis in each field. The main focus of the physicists in this field has been
the (bulk) properties of the system in the limit of large system size, corresponding to
what we refer to, at thermal equilibrium, as the thermodynamic limit. We shall use
that term here as well, although we do not mean to suggest that the properties of that
limit for equilibrium systems, such as equivalence of ensembles, hold here as well.
We would like to understand the types of possible nonequilibrium steady states,
i.e., phases of the system, and the nature of the changes from one type of phase to
another when parameters are changed, i.e., the nature of the nonequilibrium phase
transitions. In this section, we review numerical simulation studies in this area, with
discussions of their connections to both the analytical results and the actual exper-
imental observations, whenever possible.

3.1. Possible behaviors (phases)

The Vicsek model does not include any interaction to enforce a preferred distance
between boids, which are kept together only by the periodic boundary conditions in
the Vicsek’s original study[5]. While the Vicsek model probably yields an adequate
description of the transition from the moving to the nonmoving state in large sys-
tems, it cannot capture the behavior of finite flocks and of possible positional, as dis-
tinct from orientational order within the flock.

Following a model introduced by biologists Huth and Wissel [1]1in the early 1990s
for describing real bird flocks, the Vicsek model can be generalized by adding a cen-
tral force between each pair of boids within a distance R of each other. Since the
main function of such interaction is to keep the flock together, it can be called the
“cohesive interaction.” At each time step, a total force vector is determined by sum-
ming the cohesive interaction, the velocity alignment interaction and a random noise
[32] for each boid i

7= Z(dfa(rzj/)ﬁj + By (riy)iy) + 1, (74)

where j represents all the neighbors [33] within a radius R centered around the ith
boid, ¥, is the velocity of j, and 7;; is the unit vector from i to j. o and f are the
strengths of the aligning and cohesive forces, respectively, and the distance-depen-
dence is contained in the functions f, ,(r;), where r;; is the distance between boids
i and j. 7, is a noise with unit amplitude and random angle. At the next time step,
the velocity of boid i changes its direction to that of f,-, and the boid i moves with
that velocity to its new position. After each boid’s position and velocity have been
updated, the process is repeated with the new position and velocity of the boids.

In two separate papers [34,35], the general qualitative behaviors of the flocking
model with cohesive force were examined with specific choices of the interaction
functions f,, ,(r;). In [35], the strength of the alignment force is set to be constant
Ja(r;) =1 and the form of the cohesive force was taken to be
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Fig. 5. Sketch of the asymptotic phase diagram in the zero-density limit. Due to the large separation of
scales in f§, the phase diagram is broken into two panels to show details of the transition regions. Filled
circles indicate points determined numerically in [35] for a system of size L = 180, p = 1/16, see text for the
parameters of the model.
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With the parameters r. = 0.2, r, = 0.8, r. = 0.5, R = 1.0, and vy = 0.05 fixed, various
behaviors of the flock were then studied in the parameter space spanned by the rel-
ative strength (with respect to noise) of the cohesive (ff) and the alignment (o) forces
in [35]. Fig. 5 summarizes the different behaviors of the system in the zero-density
limit.

There are five different kinds of behaviors, which can be loosely called as “phas-
es”’: moving solid (MS), stationary solid (S), moving liquid (ML), stationary liquid
(L), and the gas phase (G). For small values of 8, the boids do not stay together
as a single group; instead they form smaller clusters or fly solo. We call this region
the gas phase. The rest of the parameter space where the boids stay in one cluster is
partitioned into four phases. In general, as o increases, the flock starts to move, and
as f§ increases, the boids seems to transform from the liquid phase, where their rel-
ative positions are constantly changing, to the solid phase, where the relative posi-
tions are fixed. In Fig. 6, the structures of these four condensed phases for a small
system are shown, each with several snap shots in time, to illustrate the different
flocking behaviors.

The moving and nonmoving phases can be distinguished by the average velocity
of the system, as in [5]. To distinguish between the solid and the liquid phases, a rel-
ative diffusion constant A over some large time 7 of initially neighboring boids was
used in [35]

_ /1 Vij(f)z
= <‘ 2 (l TR T>> > .
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Fig. 6. Structures of condensed phases for a small system of 128 particles, and L = 32. (A) Immobile
“solid” at o = 1.0 and f = 100.0 (20 timesteps superimposed). (B)*“Flying crystal” at o = 3.0 and f = 100.0
(three snapshots, separated by 120 timesteps). (C) Stationary fluid droplet at « = 1.0 and f=2.0 (20
consecutive timesteps). (D) Moving droplet at o = 3.0 and = 3.0 (20 consecutive timesteps). (B and D)
The arrow indicates the (instantaneous) direction of motion.

where 7; is the number of neighbors (in the Voronoi sense) for the ith boid at time .
Time T was taken to be proportional to the volume of the system, which ensures that
A records, in the large-size limit, an asymptotic property of the system. 4 measures
the inter-boid mixing inside the flock. Clearly, 4 ~ 1 in the liquid phases, while 4 ~ 0
for the solid phases. For finite system sizes, the transition point was chosen to be at
A =1

Itzis clear that the flocking model exhibits much richer behaviors once the cohesive
force is taken into account. The topology of the phase diagram is generally in agree-
ment with our intuition and it is also evident from Fig. 5 that there are strong inter-
actions between the two orders (positional and orientational) as reflected by the
curvatures of the phase boundaries. However, to establish the existence of these
phases in the thermodynamic sense requires much larger flocks and longer running
time. In particular, as we see from the next section, the nature of the phase transition
is very subtle, and extremely large simulation size is needed to understand it.



3.2. The nature of the order to disorder transition

As described before, the global orientational order of the system is described by
the average velocity of all the boids in the system. By changing the noise strength
or the size of the system with constant number of boids, Vicsek et al. [5,36] found
that the order parameter decreased to zero at a critical point continuously, suggest-
ing a second order or, more generally, continuous, phase transition between a or-
dered and a disordered phase for the system. By doing a finite scaling analysis, a
set of critical exponents were also obtained to characterize the critical point [36].

However, in a recent numerical study with much larger system size by Grégoire
and Chaté [37], the continuous nature of the moving to nonmoving phase transition
was challenged. Grégoire and Chaté showed strong evidence for a discontinuous
transition between the ordered and disordered phases of the Vicsek model. The re-
sults of their simulation are summarized in Fig. 7. From their simulation of large sys-
tems, the disordered phase can be best described as many finite clusters of boids,
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Fig. 7. Discontinuous character of the onset of collective motion in the original Vicsek model at p = 1/8.
(A) The Binder cumulant G =1 — (¢*)/3(¢*)* versus noise # at various system sizes. (B) Density (bottom
curve) and velocity (top curve) profiles along the direction of motion in the ordered phase (L = 1024,
1 = 0.18). (C) PDF of the instantaneous order parameter ¢’ near the transition point, ¢ € [7,5007]; 7 = 10°
is the correlation (persistent) time, L = 512. (D) Snapshot of coarse-grained density field in disordered
phase at the threshold, p =2, L =256. The arrows indicate the direction of motion of dense, ordered
clusters.



each moving in a different direction, coexisting with a dilute background of statisti-
cally stationary boids (Fig. 7D). Each finite ordered cluster evolves in time by collect-
ing and losing boids from the background, they can also nucleate from and dissolve
into the background. The ordered phase, on the other hand, consists of one or a few
large clusters of boids with some intriguing internal density and velocity profile (Fig.
7B). Grégoire and Chaté argued that because these two distinctive states coexist (at
least near the transition point) for finite system size, these two states occur alter-
nately in time, leading to a seemingly continuous order parameter variation, which
is probably what was observed in Vicsek’s original numerical simulations. As the sys-
tem size increases, the persistence time for each state becomes longer and, in the ther-
modynamic limit, the transition becomes discontinuous.

Perhaps the strongest evidence for a discontinuous transition is provided by the
bimodal distribution of the coarse-grained local order parameter observed near
the transition point, as shown in Figs. 7A and C. Similar characteristics of the order
parameter were also found in other variations of the Vicsek model including ones
with different forms of the noise, thus substantiating the claim of a discontinuous
transition. Could the discontinuous nature of the transition be a special feature of
the Vicesk model due to its lack of cohesive force? To answer this question, Grégoire
and Chaté [37] also investigated the moving to nonmoving transition for flocking
models with cohesive interaction in large systems. Near the critical point in the dis-
ordered phase, they found the disordered phase again consists of many small clusters
connected by thin filaments of boids, each small cluster moving in different directions
in much the same way as in the original Vicsek model. Grégoire and Chaté therefore
argued that the transition between the ordered state and this “near critical” disor-
dered state resembled the order to disordered transition in the Vicsek model, and
the onset to collective motion is always discontinuous even in the presence of cohe-
sive force.

At the phenomenological level, it is evident that the nature of the transition is gov-
erned by the strong interaction between the positional and the orientational degrees
of freedom of the system. One possibility is that the transition from the (velocity) ori-
entationally ordered phase to the disordered phase may be caused by a finite wave-
length instability for the density profile. Such instability could break the extended
large cluster into many finite size ones, each of which moves in a different direction,
leading to the vanishing of the global order parameter. At the theoretical level, it re-
mains a challenge to formulate the proper interaction between density fluctuation
and the directional order parameter near the ordering transition, which could then
be used to understand the nature of the transition analytically.

3.3. The properties of the ordered phase

Away from the transition point into the ordered phase, things are a little clearer.
Theoretically, the ordered phase (with uniform density) is found to be stable against
fluctuations caused by the spontaneous (orientational) symmetry breaking [14-16].
However, despite its simple average behavior, the stable ordered phase has highly
nontrivial properties in terms of its positional and orientational fluctuations due



to the interaction between the sound wave and the (soft) Goldstone mode. Some of
the characteristics of these fluctuations, especially those in two dimensions, can be
determined from the analytical analysis of the coarse grained continuum equations.
In this section, we review the work done by Tu et al. [15] where the properties of both
the density and velocity fluctuations in the ordered phase were studied numerically
and compared directly with the predictions from the analytical work based on the
continuum equations.

The model used in [15] is similar to the modified Vicsek model given in Eq. (74).
At a given time ¢, the position and the direction of the velocity for each boid are gi-
ven as (7(¢), 0,(¢)) for i = 1,2, ..., N. The magnitude of the velocity is fixed: |7;| = vy,
its direction is updated at the next time step by averaging over its neighbors’ moving
directions

Ot+1)=0 @ S (@) + &, (0) + ni-<r>>, (76)

j=1

where M is the number of neighbors for boid 7 within radius R: r;; = |F; — F;| < R.
The extra interaction term g; = go(7 —F,-)((,’,—lf;)3 - (%)2) makes boids repel each
other when they are closer than /,, and attract each other otherwise, with /, the aver-
age distance between boids in the flock. In [15], a high boid density p : plﬁ ~ 1 was
chosen to prevent the formation of clusters, which render the average density profile
nonuniform and complicate the analysis. The noise term 7j,;(¢) = Av(cos(me;(t)),
sin(me;(¢))), where e;(¢) is a random number in the interval [—1,1]. The function
O(X) is just the polar angle of the vector ¥. The position update is simply:
Fi(t+ 1) =7i(t) + vo(cos(0;(t)), sin(0;(r))). The parameters in this model are R, I,
Av, vy, and g.

The particular form of the interactions should not affect the universal predictions
of the continuum theory presented above, but rather should only change nonuniver-
sal phenomenological parameters like ¢, A, D), etc. They also affect the length scale
Inp beyond which the asymptotic long wavelength forms of the correlation functions
(32) and (37) apply. Indeed, a one-loop RG analysis predicts: /np ~ (IO(Di)S/ 4
(Dﬁ)l/4//10A(1,/2)(2/(4_d)) x O(1), where the sub-(or super-)script o denotes the “bare,”
or unrenormalized, value of the corresponding parameter. Higher loop corrections
may affect this result, but it presumably remains accurate to factors of O(1).

For the current numerical model, the parameters for the corresponding contin-
uum equations can be estimated on dimensional grounds: A, ~ 1, 4, ~ (Av)z%,
Dﬁ ~ D} ~ ’f—oz. Inserting these estimates, one finds Iy ~ R(%ﬁ))a/ 9 1n the simula-
tion carried out in [15], choosing units of length and time such that R=17, =1, and
taking Av ~ Av, ~ 1/3 in these units, for d = 2 a lower bound for /i : Inr. > 30 was
obtained. Previous simulations [36] took Av <« 1, and therefore have a much larger
InL. Hence, no nontrivial nonlinear effects could be observed since their systems were
much smaller than /.

The above analysis shows that in order to test the scaling behavior with a reason-
able system size, one seeks a small /i by increasing Av and decreasing the radius of
interaction R as much as possible without entering the disordered phase. In the study
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Fig. 8. (A) The order parameter ¢, as defined in the text, versus the noise strength Av. The arrow shows
the value of Av at which the fluctuations of the ordered state were calculated. (B) The scaling behavior of
the equal time correlation function for the density fluctuations in the two limits can be calculated
analytically (see [14,15] for details) in two dimensions. The lines illustrate the predicted slopes.

by Tu et al. [15], the results of a simulation with system size L x L with L =400 and
the number of boids N = 320,000 were reported. For the parameter values R =1,
g0=0.6, vo=1.0, [y = .707 used in [15], the flock becomes disordered at Av. ~ .375
(see Fig. 8A). The order parameter ¢ is defined simply as the magnitude of the aver-
age velocity of the whole flock: ¢ = N|Z, \U;]. To stay in the ordered phase and have
enough fluctuations, a large but subcritical value of noise Av = 0.15 was chosen in
[15].

For any finite flock, the direction of the average velocity will slowly change, ren-
dering difficult any comparison to the analytical results, which assume infinite system
size and hence a constant direction for (7). To make (¥) constant in its direction,
periodic boundary conditions in one of the directions, say the x direction, and
reflecting boundary conditions in the other direction y were used in [15]. When a
boid i with velocity (v}, v}) collides with the “walls” at y = £ L/2, its velocity changes
to (v7, —v7). The symmetry broken velocity is thus forced to lie along the x-direction,
without changing the bulk dynamics of the system. Hereafter “||” and x are used
interchangeably, as are “1” and y.

The equal time correlation functions can be derived analytically from the contin-
uum model, as shown in Eq. (73), from which we see that there are three regimes of ¢
space with different scalings of C,,/,( ) with g. In Fig. 8B, the equal time density cor-
relation functions are plotted in Fourier space: C,,(g|, ¢, = 2n/L) versus ¢ and

Cyp(q)=0,q.) versus g, from our simulation. The scaling behavior at long length
scales can be fitted with: C,, (¢, ¢, = 2n/L) ~ ¢;>* and C,,(q, = 0,q,) ~ ¢"*>.
These two exponents show excellent agreement with the analytical results —2 and
—6/5 predicted in Eq. (73), once one recognizes that all of the g’s in the first fit lie
in the region (% PP > > % where the analytical model predicts scaling as q;°
As can be seen from Flg 8B, the scaling region for the current simulation covers
slightly less than one decade in ¢,. It is not surprising that earlier simulations of
smaller systems with less carefully chosen parameters (leading to larger /yi), did
not observe the nontrivial scaling.




Another interesting measurement of the simulation is the anomalous diffusion of
individual boids in the direction y perpendicular to the flock’s moving direction. The
“width” of the dispersion of an ensemble of boids: w?(7) = {(y:(7) — y0))?) was mea-
sured in the simulation The analytical behavior of the anomalous diffusion can be
obtained from w?(£) ~ [y [y (vi( ))dr' d”, where v/ (¢) is the velocity of the ith
boid along y directlon at time . The Ve1001ty correlatlon function is given by (4):

(v, (0),(1)) ~ (v, (X + pit, 1)v,(¥, 0))

_ /exp(i(w — ¢gqPt)A(w — vqu)zdzqdw PRV
S(g, )

which implies: w?(7) ~ £~'/¢ = 3. In Fig. 9, the width squared w?() versus time ¢

from the numerical model was plotted in log-log scale. The scaling can be fitted ni-

cely with w?(7) ~ '3, which agrees well with the analytical result r*/>.

Besides the scaling behavior, the analytical results (32), (37) also imply the exis-
tence of sound waves as reflected in the peaks of the correlation functions Egs.
(32) and (37). From Eq. (32), at a given value of ¢, the correlation function has peaks
at o = c4(0,) q. This predlctlon is tested by measurlng the power spectrum in the y-
direction: (|op(q, =0,q, =Fn,,0 == nw)| ) (T =1024) with different values of
ny(=1,2,...,20). Fig. 10 shows the power spectra for n, =5, 10, 20. The spectra
are symmetric around w =0 (only half of the spectrum for @ >0 is shown) and
the positions of the peaks n; versus n, are shown in the inset of Fig. 10, whose slope
determines the sound velocity in the y-direction ¢ = 0.62. The power spectrum of v,
in the y direction was calculated also, which shows the same peaks.

Along the x direction, i.e., with ¢ # 0 and ¢, = 0, the analytical study predicts one
single peak for each correlation function. Indeed, as shown in figure Fig. 11, each
power spectrum shows only one peak, and again as predicted by (32), (37), the peak
for the v, power spectrum is at a different @ than the peak of the density power spec-
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Fig. 9. The log-log plot of the anomalous transverse diffusion of an individual boid versus time.
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Fig. 11. Power spectra for the density and velocity fluctuations for the same wave vector along the parallel
direction. The peaks of the two curves are clearly different.

trum! This means that the velocity fluctuations propagate with a different velocity
than the density fluctuations in the x-direction!

The comparison between the numerical model and the analytical equations can be
made at the quantitative level even beyond the values of exponents. From Fig. 12,
the values of v, and A for the continuum model can be determined from the simula-
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Fig. 12. The power spectra for the density and the velocity fluctuations in directions (A) 0, = arctan(4)
and (B) 0,, = arctan(1/3). The two peaks are clearly visible, albeit with different magnitudes. (C) The
wave velocities ¢4 (0,) are plotted in polar angle coordinates (c.(0,),0,) for the four different directions
0,=0, 0,1, 0,2, 1/2, the two axes represent ¢, = c(0,)cos(0,) and ¢, = ¢, (0,)sin(0,), respectively. The
solid curve is the prediction from the continuum model.

tion: v, = 0.93, 1 =0.75. (The fact that A # 1 reflects the absence of Galilean invari-
ance.) With the value of ¢ = 0.62 determined through Fig. 12, the sound speeds in all
other directions of propagation can be predicted from Eq. (29) with no adjustable
parameters. To test these predictions, the power spectra for the density and the
velocity fields were calculated in the numerical model at two other angles:
tan(0,) = 1/3, 4. For the large angle 0,, = arctan(4) = 76.0°, the data are shown
in Fig. 12A. The peaks for p and v, are at the same location, and the wave velocities
are ¢ (0,,1) =0.75, —0.37. The data for 0,, = arctan(1/3) = 18.4 ° are shown in Fig.
12B. The peak at w = c_(0,>) is just barely visible in the density correlation, but
both peaks show very well in the velocity correlation, and the peaks for both corre-
lation functions are at the same locations, giving the velocity c¢(0,,) = 0.97, 0.59. In
Fig. 12C, the full angle dependence of the wave velocity as predicted in Eq. (29) in
polar angle coordinates (¢4 (0,), 0,) is plotted, with the values of v,, 4, and ¢ deter-
mined earlier. Included in Fig. 12C are also the sound velocities for the two angles
0,1 and 0,, measured in the numerical model. The agreement with the predicted
velocities is excellent.



In summary, the numerical simulations strongly support the analytical continuum
theory of flocks. The observed sound speeds agree very well with predictions from
the analytical model based on continuum equations of motion. In particular, the
analytical model’s assertion that Galilean invariance is absent is confirmed by the
existence of two different nonzero sound speeds for propagation along the mean
direction of flock motion. In addition, the sound attenuation shows the anomalous
scaling predicted analytically.

However, all the results presented here are based on the premise that the ordered
state has a homogeneous density profile, which was enforced in the numerical study
in [15] by having a boid density p compatible with the preferred inter-boid distance.
If the ordered state has an inhomogeneous density profile, as reported in [37] for the
Vicsek model with low boid density, the nature of the density and velocity fluctuation
could be different, depending on the detailed structure of the average boid density pro-
file.

4. Anisotropic model

Not all flocks, of course, are equally likely to move in any direction in the space
they occupy. Flocks of birds, for instance, although they occupy a d = 3-dimensional
volume (the air), are far more likely to move horizontally than vertically. This is pre-
sumably because gravity breaks the rotational symmetry between the horizontal
plane and vertical directions.

One can imagine a variety of ““microscopic’ rules, like the Vicsek rule described ear-
lier, that would exhibit such anisotropy. For example, one could apply a “Vicsek™ rule
in three dimensions, selecting thereby a vector 7. Instead of moving along that vector,
however, one could instead move along a vector “compressed’ along some (z) axis

i =snz+ii, (78)
with s <1 and 7, = 72 — n.z. This will tend to promote motion in the x—y plane at the
expense of motion in the z-direction. Alternatively, one could project all velocities
into the x—y plane, apply a Vicsek rule to them (while still sampling neighbors in
three dimensions), and then add to this xy move a random decorrelated step in
the z direction [38].

In this section, we will review the work of [16] on such anisotropic models.

For technical reasons that will, we hope, become obvious, we will focus our atten-
tion on systems which, whatever their spatial dimension d, have an easy plane of mo-
tion; i.e., two components of velocity that are intrinsically favored over the other
d — 2. We will also assume perfect isotropy within this plane and within the d — 2
dimensional “hard” subspace. The case of birds flying horizontally corresponds to
d=3.

A natural extension of our fully isotropic model (EOM) to this case is

0T+ 4 (T- V)B4 (V- DT+ 4V(T)

— —VP(p) + o — B|7*T — doBy + DV (V - B) + DLV2E 4 DHVEE
+ Dy (V) T+ 1. (79)



Mass conservation, of course, still applies

dp+V-(pt) =0 (80)
and the pressure P(p) will still be given by the same expansion in ép = p — p,
P(p) =Y a.(dp)". (81)
n=1
In Eq. (79), ¥y denotes the d — 2 “hard” components of 7, i.e., those orthogonal to
the d=2 easy plane. Likewise, V2 and V} denote the operators >, & and
2?23 %, respectively, where i=1, 2 are the “easy” Cartesian directions, and

i =3 = d the “hard” ones. The term —5oc|E'H|2, do. > 0 suppresses these components
relative to those in the easy plane.

Eq. (79) is not, of course, the most general anisotropic model we could write
down. For instance, one could have anisotropy in the nonlinear terms: e.g, terms like
(T - ﬁ)ﬁe could have different coefficients than (7 - ﬁ)ﬁH. However, because vy
winds up being “massive,” in the sense of decaying to zero too rapidly (i.e., nonhy-
drodynamically) at long wavelengths and times to nonlinearly affect the hydrody-
namic (long wavelength, long time) behavior of the flock (in its low temperature
phase), any additional terms in (79) distinguishing ¢y and ¥, will have no effect on
the hydrodynamic behavior in the low “temperature” phase. That is, (79) already
contains enough anisotropy to generate all possible relevant, symmetry allowed
terms in the broken symmetry state. Hence, we will keep things simple and not gen-
eralize (79) further.

As we did for the isotropic problem, we will now break the symmetry of this mod-
el, i.e., look for solutions to the form

U(F,t) = (V) + o0(#, 1). (82)
Now, however, the direction of the mean velocity (%) (which we will chose as be-
fore, to be a static, spatially uniform solution of the noiseless (f = 0) version of (79))

is not arbitrary, but must lie in the easy (1,2) plane. To see this, let us, without loss of
generality, write

(U) = vy + Ve (83)
with v,, and v,. constants, in the easy plane and Z one of the d — 2 “hard” direc-
tions. To solve (79) with f = 0, these must obey

Aoy — ﬁ(vzzny + Uz )on =0 (84)

and
(o = 0%)v,. — B(v], + V2, )0, = O (85)

Subtracting v, % (85) from v,. x; (84) we obtain daw,,v,. =0, which implies that
either v,, or v,. must be zero. It is straightforward to show that the former solution
is unstable (with two linear eigenvalues o > 0) to small 7, fluctuations, while the latter
is stable (with d — 2 linear eigenvalues —da > 0) to ¥y fluctuations, so the solution
with (¥) in the easy plane is the stable one. Furthermore, fluctuations in the “hard”



directions are “massive,” in the sense of decaying rapidly to zero even at long wave-
lengths, and so can be neglected in the low temperature phase (just like v fluctua-
tions in the isotropic case). Likewise, if we take

(B) = vy (86)
fluctuations in dv, = v, — v,, will also be massive (with linear eigenvalue—2o). Elim-

inating the massive fields év, and ¥y in favor of the pressure, as we did for dyj in the
isotropic case, gives:

ov, = —D,,0,p, (87)

By = —D,uVup, (88)
where we have defined the diffusion constants:

D, = ‘2% (89)

=5 (90)

and we have used the relation (81) for the pressure, and dropped all but the leading
order linear terms in dp, since higher powers of J p in Egs. (87) and (88) prove to be
irrelevant.

Using the solutions (87) and (88), and taking, for the reasons just discussed

0(F) = (vo + 00y(7, 1))y + ve(F, )% + Tu (7, 1) 1)
we can write a closed system of equations for v,(¥,¢) and dp(7,1):

0,0p + 1,0,0p + 8.(pvy) = (D,,0; + Doy V1), (92)

)
0,0, + Y0, v, + Eax(ug) = —610:(8p) — 320:(p)” + (DO} + DO} + DuV)v, + fi,

(93)
where we have defined 2=/, + 15, and y = vy, and dropped irrelevant terms.
Proceeding as we did in the isotropic model, we begin by linearizing these equa-
tions, Fourier transforming them, and determining their mode structure.
The result of the first two steps is the Fourier transformed equations of motion:

[—i(w = voq,) + T, (§)]op(q, ) + iq.povs(§, ) =0, (94)

[—i(w —1q,) + I'(§)]v:(g, ) +1019,6p(q, @) = fi(§, ), (95)
where we have defined:

I'y(4) = Dyyq; + Dpndiy. (96)

I'(§) = Dyq;, + Dugyy + Dy 97)

Again as in the isotropic model, we first determine the eigenfrequencies w(g) of
these equations, finding



0+(§) = ¢ (0, ¢5)q — iex (@), (98)
where the sound speeds
1
Ci(()q, ¢f?) = E (’)) + U()) COS 0,7 + 02(0,}, (25(7) (99)

with

(04, 05) = \/411 (y — vo)zcoszeq + alposinzﬁqcosz(j)g, (100)

where 0 is the polar angle between g and the y-axis, and ¢; is the azimuthal angle,
measured relative to the x-axis: i.e., the angle between the projection of g orthogonal
to y, and the x-axis.

A polar plot of this sound speed versus 0; for ¢; = 0 (i.e.,  in the “easy” (i.e., x—
y) plane) looks exactly like that for the isotropic model (Fig. 2). Indeed, any slice
with fixed ¢, looks qualitatively like that figure, although, as ¢; — 3 (i.e., as ¢,
the projection of ¢ orthogonal to y, approaches orthogonality to the x-axis), the
sound velocity profile becomes two circles with their centers on the y axis and both
circles passing through the origin.

The dampings €. (§) in (98) are 0(¢%), and given by

cx (04, d5) vy cos(0z)
2¢2(0g, ¢7) 2¢:(0g, d;)

Note that, unlike the isotropic problem in d> 2, here there are no transverse
modes in any d: we always have just two longitudinal Goldstone modes associated
with dp and v,.

We can now again parallel our treatment of the isotropic model and calculate the
correlation functions and propagators. The calculation is so similar that we will not
repeat the details, but merely quote the results:

Al = vog,)’ + I5(@)]

(@) ==+ ('@ + 1,(@) T (n@ +}0rp<a>). (101)

Cn(d,w) = 102
(@) [Den(G, o)’ 12
- - - Ao—qu(w — Vo4, — ir (q))
Cpo(G, ) = (0p(§, 0)v:(—q, —)) = Den( )w)|2 —, (103)
and
. Ap3qs
Cﬂﬂ(qvw) = %2; (104)
|Den(g, »)]|

where we have defined

Den(q, ») = (o = ¢ (03, 5)q) (@ = ¢ (05, 5)q) + i[o(I',(§) + I'e(§))
= 4,(0.1(q) +7T,(4))] (105)

which, of course, implies



|Den(G, o) = (0 = ¢ (03 d5)9)* (@ = (03, 5)a)” + (T, (@)
+Tu() = ,(vTu(@) +7T,(@)) (106)

These horrific expressions actually look quite simple when plotted as a function of w
at fixed ¢g; indeed, such a plot of C,, looks precisely like Fig. 3: two asymmetrical
peaks, centered at w = c..(0;, ¢;)q, with widths e, () o ¢°.

Note that, at this linear order, everything scales as it did in the isotropic problem:
peak positions ecg, widths o<¢?, and heights oc L.

Continuing to blindly follow the path we trod for the isotropic problem, we can
calculate the equal-time v, — v, correlation function

. . . > dw . 4 9(g)
" = — = ~_ Lwl\d, =5 . 1
Cal@) = 0d.00(-2.0) = [ F2C.G0) =51 (107)
where @(g) depends only on the direction ¢ of g, and is given by
¢(q) _ 1 (C+ (01?7 ¢¢7)C] - vquy)z
G (9‘?’ ¢,7)q C+(9!?)q — Uoyq, + (C+(05)q - /llvquy) %
2
+ (C, (9% ¢q)q - onQy) (108)

Ct+ (0137 ¢5)q — Uoyq, + (07(93)‘1 - /llvquy) % '

These fluctuations again diverge like 1/¢° as |g| — 0, just as in the isotropic
problem.

This completes our abbreviated discussion of the linearized theory of the aniso-
tropic model. The most succinct summary of this linearized theory is that everything
scales just as it did in the isotropic problem. This implies that the nonlinearities (i.e.,
the 4 and o, terms in the equations of motion (92)) become relevant in and below the
same upper critical dimension d,. = 4 as in the isotropic problem. For d <4, there-
fore, these nonlinearities will change the long-distance behavior of the anisotropic
model. We will now treat these nonlinearities using renormalization group argu-
ments similar to those we used for the isotropic model in d = 2. Now, however, they
will work for all d between 2 and 4.

Notice that all of the nonlinearities in (92) are total x-derivatives, just as in the
d = 2 case for the isotropic problem. Now, however, this is true in a/l spatial dimen-
sions, not just in d = 2. (This, of course, is the reason we chose to consider precisely
two “soft” components.) Thus, we will now be able to derive exact exponents in this
model for all spatial dimensions. We will not go through the arguments in detail, as
they are virtually identical to those in the d = 2 case for the isotropic model, but will
simply quote the conclusions:

1. There are no graphical corrections to any of the diffusion constants in (92) except
D,.

2. The stable fixed point that controls the ordered phase must have /1; = 0 at least for
/(0) < 2,(0), which is a finite fraction of all flocks, and

3. 4 and 4, are not graphically renormalized.
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