ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Mining Land Cover Information Using Multilayer Perceptron and Decision Tree from MODIS Data

Kumar, Uttam and Kerle, Norman and Punia, Milap and Ramachandra, TV (2010) Mining Land Cover Information Using Multilayer Perceptron and Decision Tree from MODIS Data. In: Journal of the Indian Society of Remote Sensing, 38 (4). pp. 592-603.

[img] PDF
Mining.pdf - Published Version
Restricted to Registered users only

Download (652Kb) | Request a copy
Official URL: http://www.springerlink.com/content/62n06450546304...

Abstract

Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).

Item Type: Journal Article
Additional Information: Copyright of this article belongs to Springer.
Keywords: Land cover;Multilayer perceptrons;Decision tree;Principal component analysis;Minimum noise fraction
Department/Centre: Division of Biological Sciences > Centre for Ecological Sciences
Division of Information Sciences > Management Studies
Division of Mechanical Sciences > Centre for Sustainable Technologies (formerly ASTRA)
Date Deposited: 08 Apr 2011 07:11
Last Modified: 08 Apr 2011 07:11
URI: http://eprints.iisc.ernet.in/id/eprint/36576

Actions (login required)

View Item View Item