ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

An assessment of creep deformation and fracture behavior of 2.25Cr-1Mo

Laha, K and Chandravathi, KS and Rao, KBS and Mannan, SL and Sastry, DH (2001) An assessment of creep deformation and fracture behavior of 2.25Cr-1Mo. In: Metallurgical and Materials Transactions A, 32 (1). pp. 115-124.

[img] PDF
An_Assessment_of_Creep.pdf - Published Version
Restricted to Registered users only

Download (2160Kb) | Request a copy
Official URL: http://www.springerlink.com/content/q83235j7248j22...

Abstract

The evaluation of the creep deformation and fracture behavior of a 2.25Cr-1Mo steel base metal, a 2.25Cr-1Mo/2.25Cr-1Mo similar weld joint, and a 2.25Cr-1Mo/Alloy 800 dissimilar weld joint at 823 K over a stress range of 90 to WO MPa has been carried out. The specimens for creep testing were taken from single-V weld pads fabricated by a shielded metal arc-welding process using 2.25Cr-1Mo steel (for similar-joint) and INCONEL 182 (for dissimilar-joint) electrodes. The weld pads were subsequently given a postweld hear treatment (PWHT) of 973 K for I hour. The microstructure and microhardness of the weld joints were evaluated in the as-welded, postweld heat-treated, and creep-tested conditions. The heat-affected zone (HAZ) of similar weld joint consisted of bainite in the coarse-prior-austenitic-grain (CPAG) region near the fusion line, followed by bainite in the fine-prior-austenitic-grain (FPAG) and intercritical regions merging with the unaffected base metal. In addition to the HAZ structures in the 2.25Cr-1Mo steel, the dissimilar weld joint displayed a definite INCONEL/2.25Cr-1Mo weld interface structure present either as a sharp line or as a diffuse region. A hardness trough was observed in the intercritical region of the HAZ in both weld joints, while a maxima in hardness was seen at the weld interface of the dissimilar weld joint. Both weld joints exhibited significantly lower rupture lives compared to the 2.25Cr-1Mo base metal. The dissimilar weld joint exhibited poor rupture life compared to the similar weld joint, at applied stresses lower than 130 MPa. In both weld joints, the strain distribution across the specimen gage length during creep testing varied significantly. During creep testing, localization of deformation occurred in the intercritical HAZ. In the similar weld joint, at all stress levels investigated, and in the dissimilar weld joint, at stresses greater than or equal to 150 MPa, the creep failure occulted in the intercritical HAZ. The fracture occurred by transgranular mode with a large number of dimples. At stresses below 150 MPa, the failure in the dissimilar weld joint occurred in the CPAG HAZ near to the weld interface. The failure occurred by extensive intergranular creep cavity formation.

Item Type: Journal Article
Additional Information: Copyright of this article belongs to The Minerals, Metals & Materials Society.
Department/Centre: Division of Mechanical Sciences > Materials Engineering (formerly Metallurgy)
Date Deposited: 02 Aug 2011 08:55
Last Modified: 02 Aug 2011 08:55
URI: http://eprints.iisc.ernet.in/id/eprint/39490

Actions (login required)

View Item View Item