ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Direct numerical simulation of turbulent spots

Das, Arup and Mathew, Joseph (2001) Direct numerical simulation of turbulent spots. In: Computers & Fluids, 30 (5). pp. 533-541.

[img] PDF
Direct_numerical_simulat.pdf - Published Version
Restricted to Registered users only

Download (217Kb) | Request a copy
Official URL: http://dx.doi.org/10.1016/S0045-7930(01)00004-4

Abstract

A group of high-order finite-difference schemes for incompressible flow was implemented to simulate the evolution of turbulent spots in channel flows. The long-time accuracy of these schemes was tested by comparing the evolution of small disturbances to a plane channel flow against the growth rate predicted by linear theory. When the perturbation is the unstable eigenfunction at a Reynolds number of 7500, the solution grows only if there are a comparatively large number of (equispaced) grid points across the channel. Fifth-order upwind biasing of convection terms is found to be worse than second-order central differencing. But, for a decaying mode at a Reynolds number of 1000, about a fourth of the points suffice to obtain the correct decay rate. We show that this is due to the comparatively high gradients in the unstable eigenfunction near the walls. So, high-wave-number dissipation of the high-order upwind biasing degrades the solution especially. But for a well-resolved calculation, the weak dissipation does not degrade solutions even over the very long times (O(100)) computed in these tests. Some new solutions of spot evolution in Couette flows with pressure gradients are presented. The approach to self-similarity at long times can be seen readily in contour plots.

Item Type: Journal Article
Additional Information: Copyright of this article belongs to Elsevier Science.
Keywords: Turbulent spots;Direct numerical simulations;Stability.
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering (Formerly, Aeronautical Engineering)
Date Deposited: 02 Aug 2011 06:56
Last Modified: 02 Aug 2011 06:56
URI: http://eprints.iisc.ernet.in/id/eprint/39529

Actions (login required)

View Item View Item