ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Dynamic matrix rank with partial lookahead

Kavitha, Telikepalli (2008) Dynamic matrix rank with partial lookahead. In: Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008, 05.12.2008.

[img] PDF
Dynamic.pdf - Published Version
Restricted to Registered users only

Download (428Kb) | Request a copy
Official URL: http://drops.dagstuhl.de/opus/volltexte/2008/1759/

Abstract

We consider the problem of maintaining information about the rank of a matrix $M$ under changes to its entries. For an $n \times n$ matrix $M$, we show an amortized upper bound of $O(n^{\omega-1})$ arithmetic operations per change for this problem, where $\omega < 2.376$ is the exponent for matrix multiplication, under the assumption that there is a {\em lookahead} of up to $\Theta(n)$ locations. That is, we know up to the next $\Theta(n)$ locations $(i_1,j_1),(i_2,j_2),\ldots,$ whose entries are going to change, in advance; however we do not know the new entries in these locations in advance. We get the new entries in these locations in a dynamic manner.

Item Type: Conference Paper
Keywords: Matrix rank;dynamic algorithm;fast matrix multiplication
Department/Centre: Division of Electrical Sciences > Computer Science & Automation (Formerly, School of Automation)
Date Deposited: 23 Sep 2011 09:20
Last Modified: 23 Sep 2011 09:20
URI: http://eprints.iisc.ernet.in/id/eprint/40704

Actions (login required)

View Item View Item