ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Modeling multi-layer matrix cracking in thin walled composite rotor blades

Pawar, PM and Ganguli, R (2005) Modeling multi-layer matrix cracking in thin walled composite rotor blades. In: Journal of The American Helicopter Society, 50 (4). pp. 354-366.

Full text not available from this repository. (Request a copy)

Abstract

Helicopter rotor blades are made of fiber-reinforced composite materials that are prone to matrix cracking. Matrix cracking precedes more serious damage mechanisms such as delamination and fiber breakage and is therefore a useful indicator of structural health. In the present study, the effect of matrix cracking on composite blade stiffness and deflections is investigated. A stiff inplane rotor blade with a rectangular box and two-cell airfoil section with [0/ +/-45/90], family of laminates is considered. It is observed that the stiffness decreases rapidly in initial phase of matrix cracking and then becomes saturated. Study of the behavior of composite rotor blade from matrix cracking in single, two and complete lamina group show a bending stiffness loss of 6-12 percent and a torsion stiffness loss of 25-30 percent at the point where matrix cracking saturates, and more severe forms of damage such as debonding/delamination and fiber breakage begin.

Item Type: Journal Article
Additional Information: Copyright for this article belongs to American Helicopter Society Inc.
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering (Formerly, Aeronautical Engineering)
Date Deposited: 22 Nov 2005
Last Modified: 27 Aug 2008 11:34
URI: http://eprints.iisc.ernet.in/id/eprint/4092

Actions (login required)

View Item View Item