ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Distributed Source Coding for Sensor Data Model and Estimation of Cluster Head Errors Using Bayesian and K-Near Neighborhood Classifiers in Deployment of Dense Wireless Sensor Networks

Iyer, V and Iyengar, SS and Balakrishnan, N and Phoha, V and Murthy, GR (2009) Distributed Source Coding for Sensor Data Model and Estimation of Cluster Head Errors Using Bayesian and K-Near Neighborhood Classifiers in Deployment of Dense Wireless Sensor Networks. In: the Third International Conference on Sensor Technologies and Applications SENSORCOMM 2009, Athens/Vouliagmeni, 18-23 June 2009.

[img] PDF
Distributed.pdf - Published Version
Restricted to Registered users only

Download (431Kb) | Request a copy
Official URL: http://ieeexplore.ieee.org/search/srchabstract.jsp...

Abstract

The lifetime calculation of large dense sensor networks with fixed energy resources and the remaining residual energy have shown that for a constant energy resource in a sensor network the fault rate at the cluster head is network size invariant when using the network layer with no MAC losses.Even after increasing the battery capacities in the nodes the total lifetime does not increase after a max limit of 8 times. As this is a serious limitation lots of research has been done at the MAC layer which allows to adapt to the specific connectivity, traffic and channel polling needs for sensor networks. There have been lots of MAC protocols which allow to control the channel polling of new radios which are available to sensor nodes to communicate. This further reduces the communication overhead by idling and sleep scheduling thus extending the lifetime of the monitoring application. We address the two issues which effects the distributed characteristics and performance of connected MAC nodes. (1) To determine the theoretical minimum rate based on joint coding for a correlated data source at the singlehop, (2a) to estimate cluster head errors using Bayesian rule for routing using persistence clustering when node densities are the same and stored using prior probability at the network layer, (2b) to estimate the upper bound of routing errors when using passive clustering were the node densities at the multi-hop MACS are unknown and not stored at the multi-hop nodes a priori. In this paper we evaluate many MAC based sensor network protocols and study the effects on sensor network lifetime. A renewable energy MAC routing protocol is designed when the probabilities of active nodes are not known a priori. From theoretical derivations we show that for a Bayesian rule with known class densities of omega1, omega2 with expected error P* is bounded by max error rate of P=2P* for single-hop. We study the effects of energy losses using cross-layer simulation of - large sensor network MACS setup, the error rate which effect finding sufficient node densities to have reliable multi-hop communications due to unknown node densities. The simulation results show that even though the lifetime is comparable the expected Bayesian posterior probability error bound is close or higher than Pges2P*.

Item Type: Conference Paper
Additional Information: Copyright 2009 IEEE. Personal use of this material is permitted.However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Department/Centre: Division of Information Sciences > Supercomputer Education & Research Centre
Date Deposited: 13 Dec 2011 11:59
Last Modified: 13 Dec 2011 11:59
URI: http://eprints.iisc.ernet.in/id/eprint/41279

Actions (login required)

View Item View Item