ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Small worlds: How and why

Mathias, Nisha and Gopal, Venkatesh (2001) Small worlds: How and why. In: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 63 (2). 021117/1-12.

[img]
Preview
PDF
Small_worlds.pdf

Download (258Kb)

Abstract

We investigate small-world networks from the point of view of their origin. While the characteristics of small-world networks are now fairly well understood, there is as yet no work on what drives the emergence of such a network architecture. In situations such as neural or transportation networks, where a physical distance between the nodes of the network exists, we study whether the small-world topology arises as a consequence of a tradeoff between maximal connectivity and minimal wiring. Using simulated annealing, we study the properties of a randomly rewired network as the relative tradeoff between wiring and connectivity is varied. When the network seeks to minimize wiring, a regular graph results. At the other extreme, when connectivity is maximized, a "random" network is obtained. In the intermediate regime, a small-world network is formed. However, unlike the model of Watts and Strogatz [Nature 393, 440 (1998)], we find an alternate route to small-world behavior through the formation of hubs, small clusters where one vertex is connected to a large number of neighbors.

Item Type: Journal Article
Additional Information: The DOI is currently only displayed. Copyright for this article belongs to American Physical Society (APS)
Department/Centre: Division of Electrical Sciences > Computer Science & Automation (Formerly, School of Automation)
Date Deposited: 28 Jun 2004
Last Modified: 19 Sep 2010 04:13
URI: http://eprints.iisc.ernet.in/id/eprint/454

Actions (login required)

View Item View Item