ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Persistence in nonequilibrium surface growth

Constantin, M and Dasgupta, C and Chatraphorn, Punyindu P and Majumdar, Satya N and Sarma, Das S (2004) Persistence in nonequilibrium surface growth. In: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 69 . 061608/1-22.

[img]
Preview
PDF
Persistence.pdf

Download (1370Kb)

Abstract

Persistence probabilities of the interface height in (1 + 1)- and (2 + 1)-dimensional atomistic, solid-on-solid, stochastic models of surface growth are studied using kinetic Monte Carlo simulations, with emphasis on models that belong to the molecular beam epitaxy (MBE) universality class. Both the initial transient and the long-time steady-state regimes are investigated. We show that for growth models in the MBE universality class, the nonlinearity of the underlying dynamical equation is clearly reflected in the difference between the measured values of the positive and negative persistence exponents in both transient and steady-state regimes. For the MBE universality class, the positive and negative persistence exponents in the steady-state are found to be = 0.66±0.02 and = 0.78±0.02, respectively, in (1 + 1) dimensions, and = 0.76±0.02 and = 0.85±0.02, respectively, in (2 + 1) dimensions. The noise reduction technique is applied on some of the (1 + 1)-dimensional models in order to obtain accurate values of the persistence exponents. We show analytically that a relation between the steady-state persistence exponent and the dynamic growth exponent, found earlier to be valid for linear models, should be satisfied by the smaller of the two steady-state persistence exponents in the nonlinear models. Our numerical results for the persistence exponents are consistent with this prediction. We also find that the steady-state persistence exponents can be obtained from simulations over times that are much shorter than that required for the interface to reach the steady state. The dependence of the persistence probability on the system size and the sampling time is shown to be described by a simple scaling form.

Item Type: Journal Article
Additional Information: Copyright for this article belongs to American Physical Society (APS).
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 10 Dec 2004
Last Modified: 19 Sep 2010 04:13
URI: http://eprints.iisc.ernet.in/id/eprint/456

Actions (login required)

View Item View Item