ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Spectral element based model for wave propagation analysis in multi-wall carbon nanotubes

Chakraborty, A and Sivakumar, MS and Gopalakrishnan, S (2006) Spectral element based model for wave propagation analysis in multi-wall carbon nanotubes. In: International Journal of Solids and Structures, 43 (2). pp. 279-294.

[img] PDF
av131.pdf
Restricted to Registered users only

Download (2253Kb) | Request a copy

Abstract

A spectrally formulated finite element is developed to study elastic waves in carbon nanotubes (CNT), where the frequency content of the exciting signal is at terahertz level. A multi-walled nanotube (MWNT) is modelled as an assemblage of Euler-Bernoulli beams connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the nanotubes. The spectral element is developed using the recently developed formulation strategy based on the solution of polynomial eigenvalue problem (PEP). A single element can model a MWNT with any number of walls. Studies are carried out to investigate the effect of the number of walls on the spectrum and dispersion relation. Effect of the number of walls on the frequency response function is investigated. Response of MWNT for terahertz level loading is analyzed for broad-band shear pulse.

Item Type: Journal Article
Additional Information: Copyright for this article belongs to Elsevier.
Keywords: Multi-wall CNT; Wave propagation; Spectral finite element; SVD; polynomial eigenvalue problem
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering (Formerly, Aeronautical Engineering)
Date Deposited: 25 Jan 2006
Last Modified: 19 Sep 2010 04:23
URI: http://eprints.iisc.ernet.in/id/eprint/5234

Actions (login required)

View Item View Item