ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

TURBULENCE-TRANSPORT-CHEMISTRY INTERACTION IN STATISTICALLY PLANAR PREMIXED FLAMES AND IGNITION KERNELS IN NEAR ISOTROPIC TURBULENCE

Uranakar, Harshavardhana A and Chaudhuri, Swetaprovo and Lakshmisha, KN (2014) TURBULENCE-TRANSPORT-CHEMISTRY INTERACTION IN STATISTICALLY PLANAR PREMIXED FLAMES AND IGNITION KERNELS IN NEAR ISOTROPIC TURBULENCE. In: ASME Gas Turbine India Conference, DEC 15-17, 2014, New Delhi, INDIA.

Full text not available from this repository. (Request a copy)
Official URL: http://proceedings.asmedigitalcollection.asme.org/...

Abstract

Turbulence-transport-chemistry interaction plays a crucial role on the flame surface geometry, local and global reactionrates, and therefore, on the propagation and extinction characteristics of intensely turbulent, premixed flames encountered in LPP gas-turbine combustors. The aim of the present work is to understand these interaction effects on the flame surface annihilation and extinction of lean premixed flames, interacting with near isotropic turbulence. As an example case, lean premixed H-2-air mixture is considered so as to enable inclusion of detailed chemistry effects in Direct Numerical Simulations (DNS). The work is carried out in two phases namely, statistically planar flames and ignition kernel, both interacting with near isotropic turbulence, using the recently proposed Flame Particle Tracking (FPT) technique. Flame particles are surface points residing and commoving with an iso-scalar surface within a premixed flame. Tracking flame particles allows us to study the evolution of propagating surface locations uniquely identified with time. In this work, using DNS and FPT we study the flame speed, reaction rate and transport histories of such flame particles residing on iso-scalar surfaces. An analytical expression for the local displacement flame speed (SO is derived, and the contribution of transport and chemistry on the displacement flame speed is identified. An examination of the results of the planar case leads to a conclusion that the cause of variation in S-d may be attributed to the effects of turbulent transport and heat release rate. In the second phase of this work, the sustenance of an ignition kernel is examined in light of the S-curve. A newly proposed Damkohler number accounting for local turbulent transport and reaction rates is found to explain either the sustenance or otherwise propagation of flame kernels in near isotropic turbulence.

Item Type: Conference Proceedings
Related URLs:
Additional Information: Copy right for this article belongs to the AMER SOC MECHANICAL ENGINEERS, THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering (Formerly, Aeronautical Engineering)
Date Deposited: 09 Oct 2015 06:28
Last Modified: 09 Oct 2015 06:28
URI: http://eprints.iisc.ernet.in/id/eprint/52534

Actions (login required)

View Item View Item