ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Kinetics and Reactive Mixing: Fragmentation and Coalescence in Turbulent Fluids

Madras, Giridhar and McCoy, Benjamin J (2004) Kinetics and Reactive Mixing: Fragmentation and Coalescence in Turbulent Fluids. In: AIChE Journal, 50 (4). pp. 835-847.

[img] PDF
page186.pdf
Restricted to Registered users only

Download (191Kb) | Request a copy

Abstract

Reactive mixing in liquids can be quantitatively described by combining chemical kinetics and hydrodynamics so that dispersed reactants interact at evolving fluid-element interfaces. For the batch reactor we postulate that the dispersed fluid elements are fragmented in a cascade of increasingly smaller sizes and larger interfacial area. The reversible fragmentation-coalescence is described by a population dynamics equation that has an exact self-similar solution for the size distribution as a function of time. Two types of competitive reaction kinetics incorporating a diffusion-limited fast reaction satisfy nonlinear differential equations, written in terms of moments of the time-dependent dispersed-fluid size distribution. Applying a compressed time variable to transform to a simple system of differential equations readily solves the nonlinear equations. The straightforward solutions display realistic effects of dispersed fluid volume fraction, rate parameters, and initial concentrations. Final fractional conversions, occurring when the limiting reactant is depleted, are functions of a Damkohler number, volume fraction of dispersed reactant, and scaled initial conditions.

Item Type: Journal Article
Additional Information: copyright belongs to American Institute of Chemical Engineers
Keywords: reactive mixing;damkohler number;batch reactor;fragmentation;coalescence
Department/Centre: Division of Mechanical Sciences > Chemical Engineering
Date Deposited: 17 Feb 2006
Last Modified: 19 Sep 2010 04:23
URI: http://eprints.iisc.ernet.in/id/eprint/5392

Actions (login required)

View Item View Item