ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Computer Modeling and Molecular Dynamics Simulations of Ligand Bound Complexes of Bovine Angiogenin: Dinucleotide Topology at the Active Site of RNase A Family Proteins

Madhusudhan, MS and Sanjeev, BS and Vishveshwara, S (2001) Computer Modeling and Molecular Dynamics Simulations of Ligand Bound Complexes of Bovine Angiogenin: Dinucleotide Topology at the Active Site of RNase A Family Proteins. In: Proteins: Structure, Function, and Genetics, 45 (1). pp. 30-39.

[img] PDF
page206.pdf
Restricted to Registered users only

Download (237Kb) | Request a copy

Abstract

We have undertaken the modeling of substrate-bound structures of angiogenin. In our recent study, we modeled the dinucleotide ligand binding to human angiogenin. In the present study, the substrates CpG, UpG, and CpA were docked onto bovine angiogenin. This was achieved by overcoming the problem of an obstruction to the B1 site by the C-terminus and identifying residues that bind to the second base. The modeled complexes retain biochemically important interactions. The docked models were subjected to 1 ns of molecular dynamics, and structures from the simulation were refined by using simulated annealing. Our models explained the enzyme's specificity for both B1 and B2 bases as observed experimentally. The nature of binding of the dinucleotide substrate was compared with that of the mononucleotide product. The models of these complexes were also compared with those obtained earlier with human angiogenin. On the basis of the simulations and annealed structures, we came up with a consensus topology of dinucleotide ligands that binds to human and bovine angiogenins. This dinucleotide conformation can serve as a starting model for ligand-bound complex structures for RNase A family of proteins. We demonstrated this capability by generating the complex structure of CpA bound to eosinophil-derived neurotoxin (EDN) by fitting the consensus topology of CpA to the crystal structure of native EDN.

Item Type: Journal Article
Additional Information: The copyright belongs to WILEY-LISS, INC.
Keywords: bovine angiogenin substrate;docking;molecular dynamics;consensus conformation;substrate specificity;simulated annealing
Department/Centre: Division of Biological Sciences > Molecular Biophysics Unit
Date Deposited: 07 Mar 2006
Last Modified: 19 Sep 2010 04:24
URI: http://eprints.iisc.ernet.in/id/eprint/5608

Actions (login required)

View Item View Item