Sonoluminescence and bubble fusion*

Vijay H. Arakeri
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560 012, India

Sonoluminescence (SL), the phenomenon of light emission from nonlinear motion of a gas bubble, involves an extreme degree of energy focusing. The conditions within the bubble during the last stages of the nearly catastrophic implosion are thought to parallel the efforts aimed at developing inertial confinement fusion. A limited review on the topic of SL and its possible connection to bubble nuclear fusion is presented here. The emphasis is on looking for a link between the various forms of SL observed and the severity of bubble collapse or implosion. A simple energy analysis is also presented to enable the search for an appropriate parameter space and an experimental technique for achieving energy densities required for triggering fusion reactions within the bubble.

The motion of a sonoluminescing bubble involves the growth of a nucleus to a maximum size during the low-pressure phase of an imposed ultrasonic sound field followed by a rather violent collapse once the imposed pressure recovers to the ambient value or above. It is now well-established that light emission coincides with the last stages of bubble collapse and is associated with high temperatures and pressures generated within the bubble during this time. This is commonly termed as the hot spot model for sonoluminescence (SL). The above noted transient motion of a bubble repeats itself every cycle, and SL thus consists of extremely short duration flashes of light which are synchronous with the drive frequency of the sound field. SL is a fascinating phenomenon since it involves an extreme degree of energy focusing; basically, during this process, low-intensity sound energy in the liquid medium is converted to light energy involving energetic photons. The estimated level of energy focusing is twelve orders of magnitude. It is natural, then, to ask whether bubble nuclear fusion is possible through this mechanism (see ref. 2). In this article, some aspects of SL in the context of the above question will be examined, and a perspective on bubble fusion will also be given. It should be emphasized that the present perspective is based on simple energy considerations and does not involve any detailed computations of the type, for example, contained in Moss et al. However, the present analysis does serve the purpose of identifying important gross parameters of the problem and may prove to be helpful in designing future experiments.

Various forms of SL

In view of recent developments, SL can broadly be classified into two types, namely multi-bubble sonoluminescence (MBSL) and single-bubble sonoluminescence (SBSL). MBSL, which involves light emission from a bubble field, has been known and investigated since 1934, and several relatively recent review articles on the topic are available. On the other hand, SBSL, which involves light emission from a single, levitated bubble in a standing-wave sound field was discovered only about a decade ago. This remarkable finding has paved the way for renewed interest in the general subject of SL and related topics like bubble dynamics. Since SBSL is such a controlled phenomenon, the understanding generated about its physical aspects is both deep and extensive. As indicated in recent reviews, many aspects of SBSL are now well-understood. One of the models, which is free of adjustable parameters, is capable of explaining many of the experimental observations; however, some key aspects remain unresolved. One is extreme sensitivity of the phenomenon to variations in experimental parameters; for example, the number of photons emitted per flash is observed to increase by a factor of 100 with a decrease in the ambient temperature from about 30 to about 5°C. There are questions as to the exact mechanism of light emission and energy focusing, in particular, as to whether it is due to simple adiabatic compression or involves the formation of shocks. It is beyond the scope of the present article to go into any details about these matters (the interested reader can consult the review articles cited earlier); however, at this point it is worthwhile to mention the motivation (other than bubble fusion) for studying MBSL and SBSL.

The MBSL spectra are considered to be useful signatures of the extreme conditions, in terms of temperatures and pressures, reached within the nonlinearly oscillating bubble fields. Such fields, commonly known as acoustic cavitation, are known to be responsible for many of the chemical, physical and biological effects due to high-intensity ultrasound; one recent application is synthesis of nano-particles. On the other hand, SBSL being such a controlled phenomenon, can be considered to be a micro-laboratory for studying such diverse topics as high energy physics and chemistry, nonlinear dynamics, non-
equilibrium thermodynamics and transport processes, etc. One immediate application has been associated with SBSL flashes being of extreme short duration of the order of hundred picoseconds19,20. Thus, light from a SBSL flash has been used to determine the rise time characteristics of photomultiplier-based instrumentation21,22. Similarly, the shock wave emitted in the liquid medium during the last stages of bubble collapse associated with SBSL23 can find application in determining the response characteristics of hydrophones.

Now we discuss some results from our own studies of SL22,24 which have enabled us to infer the existence of different types of bubble motions. Long-exposure photographs of two different forms of MBSL and one form of SBSL are presented in Figure 1. A medium was found from which a nearly pure line emission (in this case golden yellow sodium D line) from MBSL was possible. The spectrum of this emission shown in Figure 2 confirms what is observed in Figure 1\textit{a} – that the dominant emission is the sodium resonance radiation near 589 nm. The doublet was not resolved due to the unusually large broadening, which from Figure 3 is estimated to be about 4 nm. From the same figure, it is apparent that there is asymmetry towards the red in the profile. Both these features are indicators of high-density environment at the instant of light emission25. One of our key findings was that the optical pulse widths of MBSL flashes in the form of sodium resonance radiation were of the order of tens of nanoseconds22. This was at first quite surprising, since these were considerably longer than the previously reported pulse widths for both MBSL21 and SBSL19,20. An explanation (which we believe is convincing) for this observation was provided in Giri and Arakeri22. Further support was found from modelling sodium emission using bubble dynamics formulation developed by Kamath \textit{et al.}26 and showing that the synthetically generated optical pulse shape agreed well with the measured one24. Thus, we demonstrated the existence of synchronous nanosecond sonoluminescence. This is in contrast to SBSL, which in one study9 has been characterized as synchronous picosecond sonoluminescence. We will return to indicate the implication of this finding in the next section.

To continue the discussion on various forms of SL, it is worthwhile to point out that the spectra of MBSL as depicted in Figure 1\textit{b} and SBSL are both broadband. The MBSL spectrum extends from about 350 nm to in excess of 700 nm and possesses a broad peak near about 450 nm22. The SBSL spectrum covers a wider range but does not show a discernible peak; its intensity continues to increase even at wavelengths of 200 nm where absorption in water (friendliest of fluids for establishing SBSL) becomes significant9. A blackbody fit to a spectrum27 indicates bubble temperatures of the order of 25,000 K. All the forms of SL shown in Figure 1 are visible to the naked eye in a darkened room. In the case of SBSL, where bubble sizes at the instant of light emission are estimated to be of the order of one micron9, the radiation is visible at a distance of almost one million times the source size. Therefore, it is not surprising that one description for SBSL has been ‘star in a jar’.

\textbf{Implications on the existence of different types of bubble motion}

In the previous section, we have presented some evidence for the existence of different forms of SL characterized

![Figure 1](image1.png)

\textbf{Figure 1.} \textit{a}, MBSL from an argon-saturated 1 N sodium chloride–ethylene glycol solution. The emission, golden yellow in appearance, is narrowband sodium D line resonance radiation. \textit{b}, MBSL from air-saturated ethylene glycol sample. The emission, bluish in appearance, is broadband and the source of emission is unknown (for further details see ref. 22). \textit{c}, SBSL (bright spot at the centre) from slightly degassed water contained in a spherical flask41.

![Figure 2](image2.png)

\textbf{Figure 2.} Low-resolution (3 nm FWHM) spectrum of MBSL in the form of sodium resonance radiation (see Figure 1\textit{a}). After Giri and Arakeri22.

912 CURRENT SCIENCE, VOL. 85, NO. 7, 10 OCTOBER 2003
by varying spectral distributions and timescales. The motion of a bubble under the influence of high-intensity ultrasound is known to depend sensitively on some parameters like the drive amplitude and frequency. Therefore, it may be reasonable to ascribe different forms of SL to varying severity of bubble implosion. Here, we examine this possible connection further. First, a summary of some of the physical characteristics of different forms of SL is provided in Table 1. The inferred type of bubble motion with soft collapse and hard collapse, as indicated in Table 1, was suggested by Giri and Arakeri to explain the vastly different timing characteristics of MBSL flashes. The SBSL flash widths are even shorter than those associated with MBSL flashes, and this may indicate that during SBSL the bubble collapse is even more severe and hence termed here as super collapse. In Table 1, we hypothesize on the existence of bubble motion with hyper collapse, and this may lead to truly extreme temperatures within the bubble. We follow-up on this in the next section.

Perspective on bubble fusion

Prospects for initiation of thermonuclear fusion reactions within a sonoluminescing bubble were suggested when theoretical simulations of the SBSL phenomenon by Wu and Roberts showed the existence of maximum bubble temperatures of the order of 10^7 K! These extreme temperatures were limited to a small region of the bubble interior and were made possible by the launch of a shock wave within the already compressed gas. The shock focuses as it approaches the bubble centre and doubles its strength when reflected from the origin. In another study, Moss et al. showed that hydrodynamic simulations of a collapsing bubble containing D$_2$ and D$_2$O vapour provide the possibility for a small number of thermonuclear D–D fusion reactions in the bubble. A more recent and complete shock-wave model used to compute the optical emissions from a single sonoluminescing bubble is that due to Moss et al.. Even though, the agreement with general experimental observations is good, it has not been possible to verify experimentally the involvement of shocks in any SL process. The potential role of shocks in the SL process will remain a controversial topic, in particular, since good agreement with the same dataset as used by Moss et al. has also been possible using a model that assumes energy focusing by simple adiabatic compression.

In a stunning development in 2002, Taleyarkhan et al. reported detection of nuclear products from a sonoluminescing bubble field. However, repetition of their work by Shapiro and Saltmarsh has cast some doubts on the original interpretations by Taleyarkhan et al.. We do not want to dwell further on this issue, except to state

Table 1. Summary of physical characteristics of some forms of MBSL and one form of SBSL. Also indicated are inferred types of bubble motion. Numerical values shown are typical

<table>
<thead>
<tr>
<th>Type of SL</th>
<th>Medium</th>
<th>Spectrum character</th>
<th>Optical pulse width of SL flash</th>
<th>Number of photons per flash</th>
<th>Power per flash</th>
<th>Bubble temperature (K)</th>
<th>Acoust. ampl. (drive level)</th>
<th>Exp. ratio R_{max}/R_e</th>
<th>Inferred type of bubble motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBSL</td>
<td>Argon-saturated NaCl–ethylene glycol solution</td>
<td>Broadened asymmetric sodium D line emission</td>
<td>50 ns</td>
<td>10^8</td>
<td>7 µW</td>
<td>3×10^3 Comp. est.24</td>
<td>1 bar (low)</td>
<td>2.2 Est.24</td>
<td>Soft collapse</td>
</tr>
<tr>
<td>MBSL</td>
<td>Air-saturated ethylene glycol</td>
<td>Broadband extending from 350 to ~ 700 nm with a peak at 450 nm</td>
<td>1 ns</td>
<td>5×10^7</td>
<td>1 mw</td>
<td>5×10^3 Est. from Cr spectra30</td>
<td>3 bar (high)</td>
<td>5 Probable</td>
<td>Hard collapse</td>
</tr>
<tr>
<td>SBSL</td>
<td>Degassed water</td>
<td>Broadband extending from 200 to > 700 nm; No peak</td>
<td>100 ps</td>
<td>5×10^7</td>
<td>8 mw</td>
<td>2.5×10^4 Est. from blackbody fit to a spectrum37</td>
<td>1.4 bar (medium)</td>
<td>10 From experiments9</td>
<td>Super collapse</td>
</tr>
<tr>
<td>SBL (single bubble luminescence)</td>
<td>Degassed low vapour-pressure liquid</td>
<td>Broadband</td>
<td>< 1 ns</td>
<td>?</td>
<td>?</td>
<td>> 10^6 Desired</td>
<td>15 bar (high)</td>
<td>100 (see text)</td>
<td>Hyper collapse</td>
</tr>
</tbody>
</table>

Figure 3. Comparison of the normalized spectrum line profiles of MBSL in the form of sodium resonance radiation (---) and that of a helium-neon laser (----). These were recorded with a scanning monochromator by shining attenuated laser light on a sonoluminescing bubble field.
that the approach taken by Taleyarkhan et al.31 was interesting. They did not take the route of SBSL, where a seeded nucleus is levitated as a bubble at the pressure node of a standing-wave acoustic field and then the acoustic pressure is gradually increased until the bubble starts to grow and become brighter. However, this process cannot be continued indefinitely; at critical pressure amplitude, \(P_{ac} \), the bubble is destroyed. From several experimental studies the magnitude of \(P_{ac} \) is found to be about 1.35 bar, with the liquid ambient pressure being 1 bar. Therefore, a limit to maximum energy focusing that can be achieved through this approach exists. Even though, as indicated earlier, the limit (~1012) is quite impressive, it does not seem to be sufficient for initiation of fusion reactions, the extent of energy focusing is primarily determined by the magnitude of \(P_{ac} \). In essence, it can be stated that on the basis of experimental evidence and theoretical considerations, the extent of energy focusing is primarily determined by the magnitude of \(P_{ac} \). It turns out that this parameter comes out naturally, if one considers the energetics of a cavitation bubble. As indicated earlier, the transient motion of a sonoluminescing or cavitation bubble involves a growth phase from an initial radius \(R_o \) to a maximum radius \(R_{max} \) under the influence of applied low pressure (in most cases it is actually negative or tensile).

During this process it acquires potential energy, which to a good approximation can be expressed as,

\[
PE = P_c \left(\frac{4}{3} \pi R_{max}^3 \right). \tag{1}
\]

In the above, \(P_c \) is the ambient pressure at the beginning of collapse and hence commonly termed as collapse pressure. It is the above potential energy, when deposited on few atoms or molecules of gas present in the bubble, which results in SL. Therefore, it is important to consider the energy density, that is the potential energy per atom or molecule of gas involved. Assuming certain equilibrium conditions for the bubble contents when its radius is \(R_o \), the number of atoms or molecules, \(N_o \), of gas in the bubble can be estimated. As expected, it turns out that the value of \(N_o \) is proportional to the bubble volume given by \((4/3) \pi R_o^3\). Using this information, the energy density \(E_d = PE/N_o \) in units of eV per atom or molecule (note: 1 J = 6.242 × 1011 eV) works out to be:

\[
E_d = 0.025(P_c/P_o)(R_{max}^3/R_o^3). \tag{2}
\]

The constant value 0.025 in eq. (2) is approximate and includes the values of Avagadro number and universal gas constant. The collapse pressure \(P_c \) can be taken equal to the ambient liquid pressure \(P_o \), unless special efforts are made to spike the acoustic wave with a pressure pulse at the right instant, and efforts in this direction are underway31. Taking \(P_c = P_o \),

\[
E_d = 0.025(R_{max}^3/R_o^3) \tag{3}
\]

is then only a function of the expansion ratio. For example, with an expansion ratio of 10 (typical of SBSL phenomenon10), the energy density is 25 eV per atom or molecule. The expressions given above for \(E_d \) do not include the possible effects due to vapourization; the tacit assumption is that any vapour formed during the growth phase will condense out during the collapse phase. However, due to the nonlinear nature of the bubble motion, this need not be the case. Recent computations33 show that some vapour does escape condensation and hence the bubble potential energy now gets distributed over both gas atoms or molecules and the remaining vapour molecules. By assuming that a fraction of the vapour molecules present in the bubble at its maximum radius escapes condensation, it is straightforward to show that the modified expression for \(E_d \) becomes:

\[
E_d = 0.025(R_{max}^3/R_o^3) \left[\frac{1}{1 + k \left(\frac{P_v}{P_o} \right) \left(\frac{R_{max}^3}{R_o^3} \right) \right]. \tag{4}
\]

Here \(k \) is the fraction of vapour escaping condensation and \(P_c \) is the vapour pressure of the host liquid.

In Figure 4, a plot of \(E_d \) versus \(R_{max}/R_o \) is presented for the following three cases: (a) \(k = 0 \); (b) \(k = 0.025 \) and...
on the value of E_d and its value increases monotonically with R_{max}/R_o. On the other hand, with $k \neq 0$, there is an asymptotic limit for E_d given by

$$\left(\frac{0.025}{k}\right) \left(\frac{P_o}{P_v}\right) \quad \text{as} \quad R_{\text{max}}/R_o \to \infty.$$

The limit for E_d can be taken to strongly depend on the value of P_v, since P_o, is generally 1 bar (in principle, P_o can be increased but there are other difficulties like requirement of increased drive acoustic pressure amplitude; hence, in our discussion here we will assume $P_o = 1$ bar). For example, with a fluid like water the limit is about 50 eV per atom or molecule. It is worthwhile to point out that some limitations on upscaling of SL by working with standard SBSL apparatus but with reduced acoustic drive frequencies has been noted by Toegel et al.35. This limitation was not predicted by computation36 and has been ascribed to the effect of water vapour.

Also shown in Figure 4 is the value of $E_d = 10^4$ eV per atom, that is taken to be a representative value for fusion initiation.37 In the case with $k = 0$, the required energy density seems possible with expansion ratio of about 75; it should be noted that this is an order of magnitude higher than what has been possible with the SBSL apparatus. The plot for the low vapour-pressure fluid in Figure 4 is nearly coincident with the plot for the case of $k = 0$, and similar conclusion as reached above is applicable. It is important to note that the energy density possible with a fluid like water is predicted to be well below 10^4 eV per atom.

Concluding remarks

The bubble potential energy available at its maximum radius gets partitioned only partially to the bubble contents and the remaining, to a large extent, goes out in the form of acoustic energy in the liquid. To compute the details of partitioning of energy into various components will again require solution to the complete governing hydrodynamic equations. Similarly, the expressions given here for energy densities are average values and do not include the possibility for sharp gradients within the bubble; such gradients are likely to exist, for example, with formation of shocks. In such cases, the expression for the potential energy remains the same; but most of the fraction of energy going into the bubble will get distributed over a smaller number of atoms or molecules present in the sharp gradient region. The effects due to sharp gradients and neglect of any efficiencies of the overall implosion process could to a certain extent compensate each other. The present analysis based on average values does serve a useful purpose. It appears that working with a fluid like water and driving a seeded bubble with high-intensity ultrasound (as, for example, done in SBSL experiments) may not be the ideal way for achieving extreme energy densities of the order required for initiating fusion reactions within the bubble. Also, the required energy densities are unlikely to be possible with multi-bubble cavitation field, since under these conditions the expansion is limited by bubble interference effects39 and loss of bubble stability40. If the implosion is not spherically symmetric it will not only reduce the energy focusing, but there is also the possibility for injection of some fluid into the bubble leading to effects similar to vapour trapping. Therefore, development of an experimental configuration which can create an isolated bubble in a low vapour-pressure fluid with large expansion ratio (~ 100), but with nearly spherically symmetric implosion, is what will be required to realize conditions close to those needed for bubble fusion.

2 Pool, R., Can sound drive fusion in a bubble? Science, 1994, 266, 1804.

REVIEW ARTICLES

ACKNOWLEDGEMENTS. I thank Prof. M. S. Hegde for arranging a loan of a scanning monochromator used for spectra measurements reported here, and Navanit V. Arakeri for assistance in manuscript preparation. The work carried out on MBSL has been supported by an Extramural Research Grant from CSIR and a DSA grant from MHRD.

Received 19 August 2003